923 resultados para Apoptosis - Theses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt's lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cationic amphiphile, cholest-5en-3 beta-oxyethyl pyridinium bromide (PY(+)-Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+)-Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GRPY(+)-Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmCGRPY(+)-Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+)-Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC ribbons in the composite suspensions. Atomic force microscopy indicates the presence of extended structures of GRPY(+)-Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmCGRPY(+)-Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmCGRPY(+)-Chol in delivering the drug to the cells, compared to the suspensions devoid of GR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4 T-lymphocytes and suppress the cytolytic effector function of CD8 T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8 T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor (IL-2R) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RTPCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2R (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8 T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4 T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Levamisole, an imidazo(2,1-b) thiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4'-fluorophenyl)-5-thiocyanato-imidazo2,1-b]1,3,4]thi adiazole). Materials and Methods: ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. Results: We have determined the IC50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC50 5 mu M). Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses) in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. Conclusion: Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Methodology/Principal Findings: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration-and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. Conclusions/Significance: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycodelin A (GdA) is a dimeric glycoprotein synthesized by the human endometrium under progesterone regulation. Based on the high sequence similarity with beta-lactoglobulin, it is placed under the lipocalin superfamily. The protein is one of the local immunomodulators present at the feto-maternal interface which affects both the innate as well as the acquired arms of the immune system, thereby bringing about successful establishment and progression of pregnancy. Our previous studies revealed that the domain responsible for the immunosuppressive activity of glycodelin lies on its protein backbone and the glycans modulate the same. This study attempts to further delineate the apoptosis inducing region of GdA. Our results demonstrate that the stretch of amino acid sequence between Met24 to Leu105 is necessary and sufficient to inhibit proliferation of T cells and induce apoptosis in them. Further, within this region the key residues involved in harboring the activity were shown to be present between Asp52 and Ser65.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we have discovered CXI-benzo-84 as a potential anticancer agent from a library of benzimidazole derivatives using cell based screening strategy. CXI-benzo-84 inhibited cell cycle progression in metaphase stage of mitosis and accumulated spindle assembly checkpoint proteins Mad2 and BubR1 on kinetochores, which subsequently activated apoptotic cell death in cancer cells. CXI-benzo-84 depolymerized both interphase and mitotic microtubules, perturbed EB1 binding to microtubules and inhibited the assembly and GTPase activity of tubulin in vitro. CXI-benzo-84 bound to tubulin at a single binding site with a dissociation constant of 1.2 +/- 0.2 mu M. Competition experiments and molecular docking suggested that CXI-benzo-84 binds to tubulin at the colchicine-site. Further, computational analysis provided a significant insight on the binding site of CXI-benzo-84 on tubulin. In addition to its potential use in cancer chemotherapy, CXI-benzo-84 may also be useful to screen colchicine-site agents and to understand the colchicine binding site on tubulin. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). Materials and Methods: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. Results: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. Conclusion: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Taxol (generic name paclitaxel), a plant-derived antineoplastic agent, used widely against breast, ovarian and lung cancer, was originally isolated from the bark of the Pacific yew, Taxus brevifolia. The limited supply of the drug has prompted efforts to find alternative sources, such as chemical synthesis, tissue and cell cultures of the Taxus species both of which are expensive and yield low levels. Fermentation processes with microorganisms would be the methods of choice to lower the costs and increase yields. Previously we have reported that F. solani isolated from T. celebica produced taxol and its precursor baccatin III in liquid grown cultures J Biosci 33: 259-67, 2008. This study was performed to evaluate the inhibition of proliferation and induction of apoptosis of cancer cell lines by the fungal taxol and fungal baccatin III of F. solani isolated from T. celebica. Methods: Cell lines such as HeLa, HepG2, Jurkat, Ovcar3 and T47D were cultured individually and treated with fungal taxol, baccatin III with or without caspase inhibitors according to experimental requirements. Their efficacy on apoptotic induction was examined. Results: Both fungal taxol and baccatin III inhibited cell proliferation of a number of cancer cell lines with IC50 ranging from 0.005 to 0.2 mu M for fungal taxol and 2 to 5 mu M for fungal baccatin III. They also induced apoptosis in JR4-Jurkat cells with a possible involvement of anti-apoptotic Bcl2 and loss in mitochondrial membrane potential, and was unaffected by inhibitors of caspase-9,-2 or -3 but was prevented in presence of caspase-10 inhibitor. DNA fragmentation was also observed in cells treated with fungal taxol and baccatin III. Conclusions: The cytotoxic activity exhibited by fungal taxol and baccatin III involves the same mechanism, dependent on caspase-10 and membrane potential loss of mitochondria, with taxol having far greater cytotoxic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.