76 resultados para Aplysia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to associate a predictive stimulus with a subsequent salient event (i.e., classical conditioning) and the ability to associate an expressed behavior with the consequences (i.e., operant conditioning) allow for a predictive understanding of a changing environment. Although they are operationally distinct, there has been considerable debate whether at some fundamental level classical and operant conditioning are mechanistically distinct or similar. Feeding behavior of Aplysia (i.e., biting) was chosen as the model system and was successfully conditioned with appetitive forms of both operant and classical conditioning. The neuronal circuitry responsible for feeding is well understood and is suitable for cellular analyses, thus providing for a mechanistic comparison between these two forms of associative learning. ^ Neuron B51 is part of the feeding circuitry of Aplysia and is critical for the expression of ingestive behaviors. B51 also is a locus of plasticity following both operant and classical conditioning. Both in vivo and in vitro operant conditioning increased the input resistance and the excitability of B51. No pairing-specific changes in the input resistance were observed following both in vivo and in vitro classical conditioning. However, classical conditioning decreased the excitability of B51. Thus, both operant and classical conditioning modified the threshold level for activation of neuron B51, but in opposite directions, revealing key differences in the cellular mechanisms underlying these two forms of associative learning. ^ Next, the cellular mechanisms underlying operant conditioning were investigated in more detail using a single-cell analogue. The single-cell analogue successfully recapitulated the previous in vivo and in vitro operant conditioning results by increasing the input resistance and the excitability of B51. Both PKA and PKC were necessary for operant conditioning. Dopamine appears to be the transmitter mediating the reinforcement signal in this form of conditioning. A D1 dopamine receptor antibody revealed that the D1receptor localizes to the axon hillock, which is also the region that gives the strongest response when iontophoresing dopamine. ^ The studies presented herein, thus, provide for a greater understanding of the mechanisms underlying both of these forms of associative learning and demonstrate that they likely operate through distinct cellular mechanisms. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite vast research efforts since Cajal's seminal thoughts on the adaptation of the nervous system, researchers have only recently begun to understand the diversity of forms of neuronal plasticity and its mechanisms. All known forms of activity-dependent neuronal plasticity utilize alterations in [Ca 2+]i as a signal of changes in the membrane voltage. Ca 2+ sensors trigger modifications in excitability or synaptic strength that last from seconds to weeks and presumably years. Intriguingly, Kunjilwar et al., (unpublished observations) discovered in peripheral sensory axons of Aplysia that the induction of depolarization-dependent long-term axonal hyperexcitability does not require Ca2+ transients. Here we show that induction of depolarization-dependent intermediate-term and long-term synaptic potentiation in Aplysia occurs in conditions that prevent Ca2+ entry through voltage-gated channels and elevation of [Ca2+]i. We found that the intermediate-term synaptic potentiation induced under conditions expected to prevent Ca 2+ transients is associated with increased excitability of sensory neuron axons near presynaptic terminals, suggesting that the synaptic potentiation involves a presynaptic locus. The Ca2+-independent intermediate- and long-term synaptic potentiation appeared similar to previously reported Ca2+-dependent modifications in Aplysia. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In various species, peripheral injury produces long-lasting sensitization of central and peripheral neurons representing the affected area. In Aplysia, memory-like traces (lasting days or weeks) of noxious peripheral stimulation include enhancement of central synaptic transmission and enhanced excitability of the central soma and peripheral branches of nociceptive sensory neurons. An important role for the cAMP-PKA-CREB pathway in consolidating long-term memory and inducing transcription-dependent synaptic potentiation has also been indicated by studies in rodents and Drosophila. ^ Much less attention has been paid to the cGMP-PKG pathway for transcription-dependent plasticity. Nevertheless, the cGMP-PKG pathway has been implicated in activity-dependent neural alterations lasting hours, and may trigger some forms of persistent pain. Recent evidence indicates PKG can regulate gene expression in the brain and several properties make it an attractive candidate for inducing long-term memories. ^ This dissertation reports that brief, noxious stimulation of a behaving, semi-intact preparation from mollusc, Aplysia californica, produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and which lasts for at least 24 hours. Intracellular injection of cGMP is sufficient to induce LTH. Similarly, body wall injury induces LTH which can be blocked with specific inhibitors of the NO-cGMP-PKG pathway such as L-NMMA, ODQ, Rp-8-cGMPS, PKI-G and KT5823 by isolated perfusion of pleural ganglion sensory cells in or directly by intracellular injection. In contrast, specific inhibitors of the cAMP-PKA pathway (Rp-8-cAMPS, PKI-A and H-89) failed to block injury-induced LTH. Interestingly, co-injection of the cAMP-responsive element (CRE) blocked the induction of both cAMP and injury-induced LTH, but not cGMP-induced LTH. Furthermore, co-injection of cAMP and cGMP with the Ca2+ buffer BAPTA in reduced Ca2+ seawater blocked cAMP-, but not cGMP-induced LTH. These findings demonstrate that the NO-cGMP-PKG pathway and at least one other pathway (perhaps mediated by Ca2+), but not the cAMP-PKA pathway, are critical for inducing LTH during transient, noxious stimulation.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After detachment from benthic habitats, the epibiont assemblages on floating seaweeds undergo substantial changes, but little is known regarding whether succession varies among different seaweed species. Given that floating algae may represent a limiting habitat in many regions, rafting organisms may be unselective and colonize any available seaweed patch at the sea surface. This process may homogenize rafting assemblages on different seaweed species, which our study examined by comparing the assemblages on benthic and floating individuals of the fucoid seaweeds Fucus vesiculosus and Sargassum muticum in the northern Wadden Sea (North Sea). Species richness was about twice as high on S. muticum as on F. vesiculosus, both on benthic and floating individuals. In both seaweed species benthic samples were more diverse than floating samples. However, the species composition differed significantly only between benthic thalli, but not between floating thalli of the two seaweed species. Separate analyses of sessile and mobile epibionts showed that the homogenization of rafting assemblages was mainly caused by mobile species. Among these, grazing isopods from the genus Idotea reached extraordinarily high densities on the floating samples from the northern Wadden Sea, suggesting that the availability of seaweed rafts was indeed limiting. Enhanced break-up of algal rafts associated with intense feeding by abundant herbivores might force rafters to recolonize benthic habitats. These colonization processes may enhance successful dispersal of rafting organisms and thereby contribute to population connectivity between sink populations in the Wadden Sea and source populations from up-current regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of nonspecific cation channels often underlies neuronal bursting and other prolonged changes in neuronal activity. In bag cell neurons of Aplysia, it recently has been suggested that an intracellular messenger-induced increase in the activity of a nonspecific cation channel may underlie the onset of a 30-min period of spontaneous action potentials referred to as the “afterdischarge.” In patch clamp studies of the channel, we show that the open probability of the channel can be increased by an average of 10.7-fold by application of ATP to the cytoplasmic side of patches. Duration histograms indicate that the increase is primarily a result of a reduction in the duration and percentage of channel closures described by the slowest time constant. The increase in open probability was not observed using 5′-adenylylimidodiphosphate, a nonhydrolyzable ATP analog, and was blocked in the presence of H7 or the more specific calcium/phospholipid-dependent protein kinase C (PKC) inhibitor peptide(19–36). Because the increase in activity observed in response to ATP occurred without application of protein kinase, our results indicate that a kinase endogenous to excised patches mediates the effect. The effect of ATP could be reversed by exogenously applied protein phosphatase 1 or by a microcystin-sensitive phosphatase also endogenous to excised patches. These results, together with work demonstrating the presence of a protein tyrosine phosphatase in these patches, suggest that the cation channel is part of a regulatory complex including at least three enzymes. This complex may act as a molecular switch to activate the cation channel and, thereby, trigger the afterdischarge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway. The guanylate cyclase inhibitor, methylene blue, blocked the NO-induced enhancement of EPSCs but only reduced the inhibition of IPSCs indicating that an additional mechanism participates to the depression of synaptic transmission by NO. Using nicotinamide, an inhibitor of ADP-ribosylation, we found that the NO-induced depression of ACh release on the inhibitory synapse also involves ADP-ribosylation mechanism(s). Furthermore, application of SIN-1 paired with cGMP-dependent protein kinase (cGMP-PK) inhibitors showed that cGMP-PK could play a role in the potentiating but not in the depressing effect of NO on ACh release. Increasing the frequency of stimulation of the presynaptic neuron from 1/60 Hz to 0.25 or 1 Hz potentiated the EPSCs and reduced the IPSCs. In these conditions, the potentiating effect of NO on the excitatory synapse was reduced, whereas its depressing effect on the inhibitory synapse was unaffected. Moreover the frequency-dependent enhancement of ACh release in the excitatory synapse was greatly reduced by the inhibition of NO synthase. Our results indicate that NO may be involved in different ways of modulation of synaptic transmission depending on the type of the synapse including synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mating triggers behavioral and physiological changes in the Drosophila melanogaster female, including an elevation of egg laying. Seminal fluid molecules from the male accessory gland are responsible for initial behavioral changes, but persistence of these changes requires stored sperm. Using genetic analysis, we have identified a seminal fluid protein that is responsible for an initial elevation of egg laying. This molecule, Acp26Aa, has structural features of a prohormone and contains a region with amino acid similarity to the egg-laying hormone of Aplysia. Acp26Aa is transferred to the female during mating, where it undergoes processing. Here we report the generation and analysis of mutants, including a null, in Acp26Aa. Females mated to male flies that lack Acp26Aa lay fewer eggs than do mates of normal males. This effect is apparent only on the first day after mating. The null mutation has no other detectable physiological or behavioral effects on the male or the mated female.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports on the extended distribution of nineteen species in the Mediterranean. These are: Upeneus pori (Fish:Turkey), Bursatella leachii (Mollusca, Opisthobranchia: eastern coast of Spain), Sparisoma cretense (Fish: Ionian coast of Greece), Pseudobryopsis myura (Chlorophyta:Turkey), Aplysia dactylomela (Mollusca, Opisthobranchia: Karpathos island, and Kyklades Archipelago, Greece), Asparagopsis armata and Botryocladia madagascariensis (Rhodophyta: South Peloponnesos, Greece), Oxynotus centrina (Fish: Greece), Caulerpa racemosa var. cylindracea (Chlorophyta ), Stypopodium schimperi (Phaeophyta ) Siganus luridus and Stephanolepis diaspros (Fish) Percnon gibbesi (Decapoda, Brachyura) (Kyklades Archipelago, Greece), Cerithium scabridum (Mollusca, Prosobranchia: Anavissos: Greece) and Cerithium renovatum (Mollusca, Prosobranchia: N. Κriti), Cassiopea andromeda (Scyphomedusa: Rhodos Island, Greece), Abra tenuis (Mollusca Bivalvia: Vouliagmeni Lake, Greece) Lagocephalus lagocephalus (Fish: Calabrian coast, Italy) and Plocamopherus ocellatus (Mollusca, Opisthobranchia: İskenderun Bay, Turkey).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides affect the activity of the myriad of neuronal circuits in the brain. They are under tight spatial and chemical control and the dynamics of their release and catabolism directly modify neuronal network activity. Understanding neuropeptide functioning requires approaches to determine their chemical and spatial heterogeneity within neural tissue, but most imaging techniques do not provide the complete information desired. To provide chemical information, most imaging techniques used to study the nervous system require preselection and labeling of the peptides of interest; however, mass spectrometry imaging (MSI) detects analytes across a broad mass range without the need to target a specific analyte. When used with matrix-assisted laser desorption/ionization (MALDI), MSI detects analytes in the mass range of neuropeptides. MALDI MSI simultaneously provides spatial and chemical information resulting in images that plot the spatial distributions of neuropeptides over the surface of a thin slice of neural tissue. Here a variety of approaches for neuropeptide characterization are developed. Specifically, several computational approaches are combined with MALDI MSI to create improved approaches that provide spatial distributions and neuropeptide characterizations. After successfully validating these MALDI MSI protocols, the methods are applied to characterize both known and unidentified neuropeptides from neural tissues. The methods are further adapted from tissue analysis to be able to perform tandem MS (MS/MS) imaging on neuronal cultures to enable the study of network formation. In addition, MALDI MSI has been carried out over the timecourse of nervous system regeneration in planarian flatworms resulting in the discovery of two novel neuropeptides that may be involved in planarian regeneration. In addition, several bioinformatic tools are developed to predict final neuropeptide structures and associated masses that can be compared to experimental MSI data in order to make assignments of neuropeptide identities. The integration of computational approaches into the experimental design of MALDI MSI has allowed improved instrument automation and enhanced data acquisition and analysis. These tools also make the methods versatile and adaptable to new sample types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Okadaic acid and its analogues are potent phosphatase inhibitors that cause Diarrheic Shellfish Poisoning (DSP) through the ingestion of contaminated shellfish by humans. This group of toxins is transmitted worldwide but the number of poisoning incidents has declined over the last 20 years due to legislation and monitoring programs that were implemented for bivalves. In the summer of 2012 and 2013, we collected a total of 101 samples of 22 different species that were made up of benthic and subtidal organisms such echinoderms, crustaceans, bivalves and gastropods from Madeira, São Miguel Island (Azores archipelago) and the northwestern coast of Morocco. The samples were analyzed by UPLC-MS/MS. Our main objective was to detect new vectors for these biotoxins. We can report nine new vectors for these toxins in the North Atlantic: Astropecten aranciacus, Arbacia lixula, Echinaster sepositus, Holothuria sanctori, Ophidiaster ophidianus, Onchidella celtica, Aplysia depilans, Patella spp., and Stramonita haemostoma. Differences in toxin contents among the species were found. Even though low concentrations were detected, the levels of toxins that were present, especially in edible species, indicate the importance of these types of studies. Routine monitoring should be extended to comprise a wider number of vectors other than for bivalves of okadaic acid and its analogues.