66 resultados para Apicomplexan
Resumo:
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Resumo:
A study was undertaken on the pathology and associated schizont morphology of apicomplexan species of avian haematozoa. Some 32 birds from the families Artamidae, Meliphagidae, Oriolidae, Podargidae, Columbidae, Alcedinidae and Psittacidae were identified as having schizonts in various tissues. Based on blood stages observed, the probable relationship to tissue stages was considered. The majority of schizonts were referable to the genera Leucocytozoon and Haemoproteus . The comparative morphology of tissue stages previously described in the literature is discussed and the involvement of protozoa other than haematozoa considered. The naturally occurring infections in wild birds described in this study represent previously unreported data on the life-cycle stages involved. Some schizonts measured up to 640 mum. While pathological changes in some hosts were noticeable, in others no significant findings were observed. The role of endogenous stages in avian morbidity is discussed briefly.
Resumo:
We explored patterns of infection of three apicomplexan blood parasites with different transmission mechanisms in 46 social groups across seven populations of the Australian lizard, Egernia stokesii. There was higher aggregation of infections within social groups for Hemolivia, transmitted by ticks, and Schellackia, either tick-transmitted or directly transmitted from mother to offspring, than for Plasmodium, with more mobile dipteran vectors. Prevalence was not related to group size, proximity to other groups or spatial overlap with adjacent groups for any of the parasites. However, for Hemolivia, groups with higher levels of relatedness among adults had higher parasite prevalence. Living in social groups leads to higher risk of infection for parasites with low transmission mobility. An unanswered question is why so few lizard species tolerate these risks to form stable social aggregations.
Resumo:
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Resumo:
Tese de Doutoramento em Ciências Veterinárias na especialidade de Sanidade Animal
Resumo:
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.