229 resultados para Anisotropia fraccional
Resumo:
In the simplest model of open inflation there are two inflaton fields decoupled from each other. One of them, the tunneling field, produces a first stage of inflation which prepares the ground for the nucleation of a highly symmetric bubble. The other, a free field, drives a second period of slow-roll inflation inside the bubble. However, the second field also evolves during the first stage of inflation, which to some extent breaks the needed symmetry. We show that this generates large supercurvature anisotropies which, together with the results of Tanaka and Sasaki, rule out this class of simple models (unless, of course, Omega0 is sufficiently close to 1). The problem does not arise in modified models where the second field does not evolve in the first stage of inflation.
Resumo:
Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.
Resumo:
CoFe-Ag-Cu granular films, prepared by rf sputtering, displayed magnetic domain microstructures for ferromagnetic concentrations above about 32% at, and below the percolation threshold. All samples have a fcc structure with an (111) texture perpendicular to the film plane. Magnetic force microscopy (MFM) showed a variety of magnetic domain microstructures, extremely sensitive to the magnetic history of the sample, which arise from the balance of the ferromagnetic exchange, the dipolar interactions and perpendicular magnetocrystalline anisotropy, MFM images indicate that in virgin samples, magnetic bubble domains with an out-of-plane component of the magnetization are surrounded by a quasicontinuous background of opposite magnetization domains. The application of a magnetic field in different geometries drastically modifies the microstructure of the system in the remanent state: i) for an in-plane field, the MFM images show that most of the magnetic moments are aligned along the film plane, ii) for an out-of-plane field, the MFM signal increases about one order of magnitude, and out-of-plane striped domains with alternating up and down magnetization are stabilized. Numerical simulations show that a variety of metastable domain structures (similar to those observed experimentally) can be reached, depending on magnetic history, in systems with competing perpendicular anisotropy, exchange and dipolar interactions.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
We report the first observation of steps in the hysteresis loop of a high¿spin molecular magnet. We propose that the steps, which occur every 0.46 T, are due to thermally assisted resonant tunneling between different quantum spin states. Magnetic relaxation increases dramatically when the field is in the neighborhood of a step. A simple model accounts for the observations and predicts a value for the anisotropy barrier consistent with that inferred from the superparamagnetic blocking temperature
Resumo:
The recent observation of steps at regular intervals of magnetic field in the hysteresis loops of oriented crystals of the spin-10 molecular magnet Mn12O12(CH3COO)16(H2O)4 has been attributed to resonant tunneling between spin states. Here, we investigate the effect on the relaxation rate of applying the magnetic field at an angle with respect to the easy axis of magnetization. We find that the position of the resonances is independent of the transverse component of the field, and is determined solely by the longitudinal component. On the other hand, a transverse field significantly increases the relaxation rate, both on and off resonance. We discuss classical and quantum mechanical interpretations of this effect
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
We present a study of the magnetic relaxation of several ferrofluids composed of particles of about 40 Å in diameter (Fe3O4FeC, CoFe2O4). Our key observation is a nonthermal character of the relaxation below 3 K for the CoFe2O4 ferrofluid and below 1 K for the FeC ferrofluid. The crossover temperature from thermal to nonthermal (quantum) regime is in accordance with theoretical suggestions of macroscopic quantum tunneling of magnetization in single doma in particles
Resumo:
Magnetic properties of Fe nanodots are simulated using a scaling technique and Monte Carlo method, in good agreement with experimental results. For the 20-nm-thick dots with diameters larger than 60¿nm, the magnetization reversal via vortex state is observed. The role of magnetic interaction between dots in arrays in the reversal process is studied as a function of nanometric center-to-center distance. When this distance is more than twice the dot diameter, the interaction can be neglected and the magnetic properties of the entire array are determined by the magnetic configuration of the individual dots. The effect of crystalline anisotropy on the vortex state is investigated. For arrays of noninteracting dots, the anisotropy strongly affects the vortex nucleation field and coercivity, and only slightly affects the vortex annihilation field
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state