843 resultados para Animal Production Systems Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is primarily concerned with the modelling of aircraft manufacturing cost. The aim is to establish an integrated life cycle balanced design process through a systems engineering approach to interdisciplinary analysis and control. The cost modelling is achieved using the genetic causal approach that enforces product family categorisation and the subsequent generation of causal relationships between deterministic cost components and their design source. This utilises causal parametric cost drivers and the definition of the physical architecture from the Work Breakdown Structure (WBS) to identify product families. The paper presents applications to the overall aircraft design with a particular focus on the fuselage as a subsystem of the aircraft, including fuselage panels and localised detail, as well as engine nacelles. The higher level application to aircraft requirements and functional analysis is investigated and verified relative to life cycle design issues for the relationship between acquisition cost and Direct Operational Cost (DOC), for a range of both metal and composite subsystems. Maintenance is considered in some detail as an important contributor to DOC and life cycle cost. The lower level application to aircraft physical architecture is investigated and verified for the WBS of an engine nacelle, including a sequential build stage investigation of the materials, fabrication and assembly costs. The studies are then extended by investigating the acquisition cost of aircraft fuselages, including the recurring unit cost and the non-recurring design cost of the airframe sub-system. The systems costing methodology is facilitated by the genetic causal cost modeling technique as the latter is highly generic, interdisciplinary, flexible, multilevel and recursive in nature, and can be applied at the various analysis levels required of systems engineering. Therefore, the main contribution of paper is a methodology for applying systems engineering costing, supported by the genetic causal cost modeling approach, whether at a requirements, functional or physical level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contemporary world is crowded of large, interdisciplinary, complex systems made of other systems, personnel, hardware, software, information, processes, and facilities. The Systems Engineering (SE) field proposes an integrated holistic approach to tackle these socio-technical systems that is crucial to take proper account of their multifaceted nature and numerous interrelationships, providing the means to enable their successful realization. Model-Based Systems Engineering (MBSE) is an emerging paradigm in the SE field and can be described as the formalized application of modelling principles, methods, languages, and tools to the entire lifecycle of those systems, enhancing communications and knowledge capture, shared understanding, improved design precision and integrity, better development traceability, and reduced development risks. This thesis is devoted to the application of the novel MBSE paradigm to the Urban Traffic & Environment domain. The proposed system, the GUILTE (Guiding Urban Intelligent Traffic & Environment), deals with a present-day real challenging problem “at the agenda” of world leaders, national governors, local authorities, research agencies, academia, and general public. The main purposes of the system are to provide an integrated development framework for the municipalities, and to support the (short-time and real-time) operations of the urban traffic through Intelligent Transportation Systems, highlighting two fundamental aspects: the evaluation of the related environmental impacts (in particular, the air pollution and the noise), and the dissemination of information to the citizens, endorsing their involvement and participation. These objectives are related with the high-level complex challenge of developing sustainable urban transportation networks. The development process of the GUILTE system is supported by a new methodology, the LITHE (Agile Systems Modelling Engineering), which aims to lightening the complexity and burdensome of the existing methodologies by emphasizing agile principles such as continuous communication, feedback, stakeholders involvement, short iterations and rapid response. These principles are accomplished through a universal and intuitive SE process, the SIMILAR process model (which was redefined at the light of the modern international standards), a lean MBSE method, and a coherent System Model developed through the benchmark graphical modeling languages SysML and OPDs/OPL. The main contributions of the work are, in their essence, models and can be settled as: a revised process model for the SE field, an agile methodology for MBSE development environments, a graphical tool to support the proposed methodology, and a System Model for the GUILTE system. The comprehensive literature reviews provided for the main scientific field of this research (SE/MBSE) and for the application domain (Traffic & Environment) can also be seen as a relevant contribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This paper presents a combined multi-phase supplier selection model. The process repeatedly revisits the criteria and sourcing decision as the development process continues. This enables a structured adoption of product and production system innovation from strategic suppliers, where previously the literature purely focuses on product innovation or cost reduction. Design/methodology/approach: The authors adopted an embedded researcher style, inductive, qualitative case study of an industrial supply cluster comprising a focal automotive company and its interaction with three different strategic stamping suppliers. Findings: Our contribution is the multi-phased production and product innovation process. This is an advance from traditional supplier selection and also an extension of ideas of supplier-located product development as it includes production system development, and complements the literature on working with strategic suppliers. Specifically, we explicitly articulate the previously unreported issue of whether a supplier chosen for its innovation capabilities at the start of the new product development process will also be the most appropriate supplier during the production system development phase, when an ability to work collaboratively may be the most important attribute, or in the large-scale production phase when an ability to manufacture at low unit cost may be most important. Originality/value: The paper identifies a multi-phase approach to tendering within a fixed body of strategic suppliers which seeks to identify the optimum technological and process decisions as well as the traditional supplier sourcing choice. These areas have not been combined before and generate a valuable approach for firms to adopt as well as for researchers to extend our understanding of a highly complex process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the effects of environmental variables on traditional and alternative agroecosystems in three Ejidos (communal lands) in the Chiapas rainforest in Mexico. The tests occurred within two seasonal agricultural cycles. In spring-summer, experiments were performed with the traditional slash, fell and burn (S-F-B) system, no-burn systems and rotating systems with Mucuna deeringiana Bort., and in the autumn-winter agricultural cycle, three no-burn systems were compared to evaluate the effect of alternative sowing with corn (no-burn and topological modification of sowing). The results show a high floristic diversity in the study area (S_S = 4 - 23%), with no significant differences among the systems evaluated. In the first cycle, the analysis of the agronomical variables of the corn indicated better properties in the fallowing systems, with an average yield of 1950 kg ha^‑1, but there was variation related to the number of years left fallow. In the second cycle, the yields were positive for the alternative technology (average yield 3100 kg ha^‑1). The traditional S-F-B systems had reduced pests and increased organic matter and soil phosphorous content. These results are the consequence of fallow periods and adaptation to the environment; thus, this practice in the Chiapas rainforest constitutes an ethnocultural reality, which is unlikely to change in the near future if the agrosystems are managed based on historical principles.