986 resultados para Angiotensin-receptor blocker
Resumo:
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.
Resumo:
Lacchini S, Heimann AS, Evangelista FS, Cardoso L, Silva GJ, Krieger JE. Cuff-induced vascular intima thickening is influenced by titration of the Ace gene in mice. Physiol Genomics 37: 225-230, 2009. First published March 3, 2009; doi:10.1152/physiolgenomics.90288.2008.-We tested the hypothesis that small changes in angiotensin I-converting enzyme (ACE) expression can alter the vascular response to injury. Male mice containing one, two, three, and four copies of the Ace gene with no detectable vascular abnormality or changes in blood pressure were submitted to cuff-induced femoral artery injury. Femoral thickening was higher in 3- and 4-copy mice (42.4 +/- 4.3% and 45.7 +/- 6.5%, respectively) compared with 1- and 2-copy mice (8.3 +/- 1.3% and 8.5 +/- 0.9%, respectively). Femoral ACE levels from control and injured vessels were assessed in 1- and 3-copy Ace mice, which represent the extremes of the observed response. ACE vascular activity was higher in 3- vs. 1-copy Ace mice (2.4-fold, P < 0.05) in the control uninjured vessel. Upon injury, ACE activity significantly increased in both groups [2.41-fold and 2.14-fold (P < 0.05) for 1- and 3-copy groups, respectively] but reached higher levels in 3- vs. 1-copy Ace mice (P < 0.05). Pharmacological interventions were then used as a counterproof and to indirectly assess the role of angiotensin II (ANG II) on this response. Interestingly, ACE inhibition (enalapril) and ANG II AT(1) receptor blocker (losartan) reduced intima thickening in 3-copy mice to 1-copy mouse values (P < 0.05) while ANG II treatment significantly increased intima thickening in 1-copy mice to 3-copy mouse levels (P < 0.05). Together, these data indicate that small physiologically relevant changes in ACE, not associated with basal vascular abnormalities or blood pressure levels, do influence the magnitude of cuff-induced neointima thickening in mice.
Resumo:
Suppression of the renin-angiotensin system during lactation causes irreversible renal structural changes. In this study we investigated 1) the time course and the mechanisms underlying the chronic kidney disease caused by administration of the AT(1) receptor blocker losartan during lactation, and 2) whether this untoward effect can be used to engender a new model of chronic kidney disease. Male Munich-Wistar pups were divided into two groups: C, whose mothers were untreated, and L(Lact), whose mothers received oral losartan (250 mg.kg(-1).day(-1)) during the first 20 days after delivery. At 3 mo of life, both nephron number and the glomerular filtration rate were reduced in L(Lact) rats, whereas glomerular pressure was elevated. Unselective proteinuria and decreased expression of the zonula occludens-1 protein were also observed, along with modest glomerulosclerosis, significant interstitial expansion and inflammation, and wide glomerular volume variation, with a stable subpopulation of exceedingly small glomeruli. In addition, the urine osmolality was persistently lower in L(Lact) rats. At 10 mo of age, L(Lact) rats exhibited systemic hypertension, heavy albuminuria, substantial glomerulosclerosis, severe renal interstitial expansion and inflammation, and creatinine retention. Conclusions are that 1) oral losartan during lactation can be used as a simple and easily reproducible model of chronic kidney disease in adult life, associated with low mortality and no arterial hypertension until advanced stages; and 2) the mechanisms involved in the progression of renal injury in this model include glomerular hypertension, glomerular hypertrophy, podocyte injury, and interstitial inflammation.
Resumo:
A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy, Blood pressure, heart rate, fetuses and dams` body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the US group than in the NS and HS groups. The PRA was greater in IS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of angiotensins I and II were lower in the HS group than in the ISIS and IS groups. Placental angiotensin receptor type 1 (AT(1)) gene expression and levels of thiobarbituric acid reactive substances (TBARS) were higher in HS dams, as were uterine blood flow and cardiac output. The degree of salt intake did not influence plasma sodium, potassium or creatinine. Although fractional sodium excretion was higher in HS dams than in NS and LS dams, fractional potassium excretion was unchanged. In conclusion, findings from this study indicate that the reduction in fetal weight in response to salt restriction during pregnancy does not involve alterations in uterine-placental perfusion or the RAS. Moreover, no change in fetal weight is observed in response to salt overload during pregnancy. However, salt overload did lead to an increase in placental weight and uterine blood flow associated with alterations in maternal plasma and placental RAS. Therefore, these findings indicate that changes in salt intake during pregnancy lead to alterations in uterine-placental perfusion and fetal growth. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Fanelli C, Fernandes BH, Machado FG, Okabe C, Malheiros DM, Fujihara CK, Zatz R. Effects of losartan, in monotherapy or in association with hydrochlorothiazide, in chronic nephropathy resulting from losartan treatment during lactation. Am J Physiol Renal Physiol 301: F580-F587, 2011. First published June 8, 2011; doi:10.1152/ajprenal.00042.2011.-We recently standardized a model (L(Lact)) of severe chronic kidney disease based on impaired nephrogenesis by suppression of angiotensin II activity during lactation (Machado FG, Poppi EP, Fanelli C, Malheiros DM, Zatz R, Fujihara CK. Am J Physiol Renal Physiol 294: F1345-F1353, 2008). In this new study of the L(Lact) model, we sought to gain further insight into renal injury mechanisms associated with this model and to verify whether the renoprotection obtained with the association of the angiotensin II receptor blocker losartan (L) and hydrochlorothiazide (H), which arrested renal injury in the remnant kidney model, would provide similar renoprotection. Twenty Munich-Wistar dams, each nursing six pups, were divided into control, untreated, and L(Lact) groups, given losartan (L; 250 mg.kg(-1).day(-1)) until weaning. The male LLact offspring remained untreated until 7 mo of age, when renal functional and structural parameters were studied in 17 of them, used as pretreatment control (L(Lact)Pre), and followed no further. The remaining rats were then divided among groups L(Lact) + V, untreated; L(Lact) + L, given L (50 mg.kg(-1).day(-1)) now as a therapy; L(Lact) + H, given H (6 mg.kg(-1).day(-1)); and L(Lact) + LH, given L and H. All parameters were reassessed 3 mo later in these groups and in age-matched controls. At this time, L(Lact) rats exhibited hypertension, severe albuminuria, glomerular damage, marked interstitial expansion/inflammation, enhanced cell proliferation, myofibroblast infiltration, and creatinine retention. L monotherapy normalized albuminuria and prevented hypertension and the progression of renal injury, inflammation, and myofibroblast infiltration. In contrast to the remnant model, the LH combination promoted only slight additional renoprotection, perhaps because of a limited tendency to retain sodium in L(Lact) rats.
Resumo:
Many features of chronic kidney disease may be reversed, but it is unclear whether advanced lesions, such as adhesions of sclerotic glomerular tufts to Bowman`s capsule (synechiae), can resolve during treatment. We previously showed, using a renal ablation model, that the renoprotective effect of the AT-1 receptor blocker, losartan, is dose-dependent. Here we determined if moderate and advanced glomerular lesions, associated with streptozotocin-induced diabetes, regress with conventional or high-dose losartan treatment. Using daily insulin injection for 10 months, we maintained diabetic adult male Munich-Wistar rats in a state of moderate hyperglycemia. Following this period, some rats continued to receive insulin with or without conventional or high-dose losartan for an additional 2 months. Diabetic rats pretreated with insulin for 10 months and age-matched non-diabetic rats served as controls. Mesangial expansion was found in the control diabetic rats and was exacerbated in those rats maintained on only insulin for an additional 2 months. Conventional and high-dose losartan treatments reduced this mesangial expansion and the severity of synechiae lesions below that found prior to treatment; however, the frequency of the latter was unchanged. There was no dose-response effect of losartan. Our results show that regression of mesangial expansion and contraction of sclerotic lesions is feasible in the treatment of diabetes, but complete resolution of advanced glomerulosclerosis may be hard to achieve.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
Resumo:
OBJECTIVE: To determine whether arginine vasopressin releases endothelium-derived nitric oxide (EDNO) from the epicardial coronary artery. METHODS: We studied segments of canine left circumflex coronary arteries suspended in organ chambers to measure isometric force. The coronary artery segments were contracted with prostaglandin F2alpha (2 x 10-6M) and exposed to a unique, strong arginine vasopressin concentration (10-6M) or titrated concentrations (10-9 a 10-5 M). RESULTS: The unique dose of arginine vasopressin concentration (10-6M) induced transient, but significant (p<0.05), relaxation in arterial segments with endothelium, and an increase, not significant, in tension in arteries without endothelium. Endothelium-dependent relaxation to arginine vasopressin was inhibited by Ng-monomethyl-L-arginine (L-NMMA, 10-5M) or N G-nitro-L-arginine (L-NOARG) (10-4M), 2 inhibitors of nitric oxide synthesis from L-arginine. Exogenous L-arginine (10-4M), but not D-arginine (10-4M), reversed the inhibitory effect of L-NMMA on vasopressin-mediated vasorelaxation. Endothelium dependent relaxation to vasopressin was also reversibly inhibited by the vasopressin V1-receptor blocker d(CH2)5Try(Me) arginine vasopressin (10-6M) (n=6, P<0.05). CONCLUSION: Vasopressin acts through V1 endothelial receptors to stimulate nitric oxide release from L-arginine.
Resumo:
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10-14 to 10-7 M) and/or losartan, 10-16 to 10-6 M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cytotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10-13 M and 10-12 M AII concentrations. The addition of losartan (up to10-14 M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.
Resumo:
Telmisartan is an angiotensin II receptor blocker with peroxisome proliferator-activated receptor-gamma agonistic properties. Telmisartan prevents weight gain and decreases food intake in models of obesity and in glitazone-treated rodents. This study further investigates the influence of telmisartan and pioglitazone and their association on weight gain and body composition by examining their influence on neuroendocrine mediators involved in food intake. Male C57/Black 6 mice were fed a high-fat diet, weight matched, and randomized in 4 treatment groups: vehicle, pioglitazone, telmisartan, and pioglitazone-telmisartan. Weight gain, food and water intake, body composition, plasma leptin levels, and the hypothalamic expression of neuroendocrine mediators were analyzed. Additional studies were performed with irbesartan and in angiotensin II 1(A) receptor-knockout mice. Telmisartan abolished weight and fat gain in vehicle- and pioglitazone-treated mice while decreasing food intake, the hypothalamic expression of the agouti-related protein, and plasma leptin levels. Modifications in neuropeptide Y and proopiomelanocortin were not consistent with changes in food intake. The effects on weight gain and expression of the agouti-related protein were intermediate with irbesartan. The effects of telmisartan on weight gain were even more pronounced in angiotensin II 1(A) receptor-knockout mice. This study confirms the anorexigenic effects of telmisartan in mice fed a high-fat diet and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation. These anorexigenic properties abolish both weight gain and body composition modifications in fat-fed and glitazone-treated mice. The anorexigenic properties are independent from the angiotensin II 1(A) receptor.
Resumo:
Dans ce travail de thèse, nous avons étudié les mécanismes d'action de deux médicaments connus pour diminuer la prise alimentaire et pondérale : la metformine et le telmisartan. Nous avons dans un premier temps étudié les effets de la metformine, un antidiabétique oral connu pour avoir des effets anorexigènes. Les mécanismes hypothalamiques potentiellement impliqués dans la modulation de la prise alimentaire par la metformine ont été étudiés dans trois groupes de rats : un groupe de rats obèses (DIO), un groupe de rats résistants à l'obésité (DR) ainsi qu'un groupe contrôle. A la fin de la période de prise pondérale de six mois, les rats DIO avaient des taux d'ARNm de NPY hypothalamique plus élevés que leurs congénères résistants et contrôles. Chez les DIO ainsi que chez les DR un traitement par metformine induit une baisse significative de la prise alimentaire accompagnée par une baisse du poids. Nous avons pu d'autre part constater que la perte de poids obtenue par un traitement de metformine était corrélée aux taux circulants de leptine avant le traitement. Cet effet s'accompagne d'une augmentation de l'expression du récepteur ObRb au niveau hypothalamique. Dans un second temps, nous avons étudié les effets du telmisartan, un inhibiteur du récepteur à l'angiotensine II ayant une activité agoniste partielle PPARγ. L'influence du telmisartan associé à la pioglitazone sur la prise alimentaire et pondérale a été examinée en étudiant leur effet sur les neuropeptides hypothalamiques responsables du contrôle de la prise alimentaire. Quatre groupes de souris soumises à un régime riche en graisse ont été formés : un groupe placebo, un groupe pioglitazone, un groupe telmisartan et un groupe pioglitazone-telmisartan. Le telmisartan a aboli la prise pondérale induite par une diète riche en graisse ou par un traitement de pioglitazone. Cette diminution était corrélée à une baisse de la prise alimentaire et de l'expression hypothalamique d'AgRP. Cette étude confirme donc les effets anorexigènes du telmisartan et démontre pour la première fois le rôle fonctionnel du telmisartan sur l'expression hypothalamique d'AgRP. English Abstract : In this work, we investigated the effect of two drugs known to have interessants effects on food intake and body weight. First we investigated the hypothalamic mechanisms potentially implicated in the modulation of feeding by the glucose-lowering drug metformin in three different groups of animals: diet-induced obese (DIO) and diet-resistant (DR) male rats as well as lean controls (CT). At the end of the high fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic NPY expression than DR or CT, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pre-treatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. Next we investigated the antihypertensive drug Telmisartan, an angiotensin II receptor blocker with PPARγ agonistic properties. The influence of telmisartan, of pioglitazone and of their association on weight gain and food intake was assessed by studying their effects on neuro-endocrine mediators involved in food intake. Mice were fed a high fat diet, weightmatched and randomized in four treatment groups: vehicle, pioglitazone, telmisartan and pioglitazone-telmisartan. Telmisartan treatment was found to abolish weight and fat gain in either vehicle or pioglitazone treated mice. This effect was accompanied by a decrease in food intake. The hypothalamic expression of the agouti-related protein and plasma leptin levels show also a decrease under metformin treatment. This study confirms the anorexigenic effects of telmisartan in mice fed a high fat diet, and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation.
Resumo:
OBJECTIVES: We investigated the influence of angiotensin receptor blockade and angiotensin-converting enzyme inhibition on stress-induced platelet activation in hypertensive patients. Secondary aims were effects on inflammation, coagulation, and endothelial function. METHODS: Following a 4-week placebo period, 25 hypertensive patients entered a double-blind, crossover study comparing enalapril (20 mg once daily) and losartan (100 mg once daily) treatment (each for 8 weeks). Patients were studied at rest and after a standardized exercise test. RESULTS: Mean arterial pressure was reduced from 119 ± 2 to 104 ± 2 (enalapril) and 106 ± 2 (losartan) mmHg (both P <0.001). Plasma angiotensin II decreased from 2.4 ± 0.4 to 0.5 ± 0.1 pmol/l with enalapril, and increased to 7.2 ± 1.3 pmol/l with losartan (both P <0.001). Exercise-evoked platelet activation, as evidenced by increased numbers of P-selectin-positive platelets (P <0.01), elevated circulating platelet-platelet aggregates (P <0.01) and soluble P-selectin levels (P <0.001), and increased platelet responsiveness to adenosine diphosphate and thrombin (both P <0.05). Neither drug influenced these markers of platelet activation at rest or following exercise. Markers of inflammation (high-sensitivity C reactive protein, interleukin-6, tissue necrosis factor-α), coagulation (tissue plasminogen activator antigen, prothrombin fragment F1+2), and endothelial function (von Willebrand factor, soluble vascular cellular adhesion molecule-1, and intercellular adhesion molecule-1) were also uninfluenced by treatment. CONCLUSION: Enalapril and losartan failed to reduce platelet activity both at rest and during exercise in hypertensive patients. Markers of inflammation, coagulation, and endothelial function were similarly unaffected. Inhibition of the renin-angiotensin system promotes its beneficial effects in hypertension through mechanisms other than platelet inhibition.
Resumo:
Introduction: Blockade of the renin-angiotensin system is one of the major therapeutic strategies in the management of patients with essential hypertension, congestive heart failure and diabetic as well as non-diabetic renal diseases. As the first angiotensin II receptor blocker (ARB) on the market, losartan belongs to the most frequently prescribed ARB. Area covered : The present review examines the pharmacokinetics of losartan with a special discussion on the dose of losartan that should be used in clinical practice to obtain the maximal benefits of the drug. Readers are provided with arguments suggesting that the dose of 50 mg losartan is probably too low and that losartan should preferably be prescribed at the dose of 100 mg/day or higher. Expert opinion : Losartan is an effective antagonist of angiotensin II AT(1) receptors which has been shown to provide important clinical benefits in patients with hypertension, congestive heart failure and renal diseases. Losartan should be prescribed at the dose of 100 mg/day and the use of higher doses should be reconsidered in future studies to improve its clinical efficacy.
Resumo:
L'angioedème est une affection fréquente, dont les étiologies sont multiples. Les angioedèmes habituellement associés à une urticaire sont en général dus à une libération d'histamine et répondent en principe aux antihistaminiques et à l'adrénaline. Il s'agit des angioedèmes d'origine allergique, des réactions anaphylactoïdes, souvent d'origine médicamenteuse (AINS), des angioedèmes physiques et de l'angioedème récurrent idiopathique. La bradykinine joue certainement un rôle dans la genèse des angioedèmes associés aux inhibiteurs de l'enzyme de conversion de l'angiotensine et rarement aux antagonistes du récepteur de l'angiotensine II, ainsi que dans celle des rares angioedèmes héréditaires ou liés à un déficit acquis en Ci-inhibiteur. L'urticaire est alors absente et les antihistaminiques ainsi que l'adrénaline sont inefficaces. Angioedema is a frequent disorder with multiple aetiologies. Angioedemas associated with urticaria are usually caused by histamine release and respond to anti-histamines and adrenalin. They include allergic angioedemas, anaphylactoid reactions (mostly drug-induced, e.g. NSAID), physical angioedemas and recurrent idiopathic angioedema. Bradykinin probably plays a causative role in the pathogenesis of ACE-inhibitor or angiotensin II receptor blocker related angioedemas, as well as in the pathogenesis of the rare hereditary or acquired C1-inhibitor deficiency angioedemas. Urticaria is then typically absent and anti-histamines, as well as adrenalin, are ineffective