999 resultados para Anelastic relaxation theory
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
This thesis is concerned with investigations of the effects of molecular encounters on nuclear magnetic resonance spin-lattice relaxation times, with particular reference to mesitylene in mixtures with cyclohexane and TMS. The purpose of the work was to establish the best theoretical description of T1 and assess whether a recently identified mechanism (buffeting), that influences n.m.r. chemical shifts, governs Tl also. A set of experimental conditions are presented that allow reliable measurements of Tl and the N. O. E. for 1H and 13C using both C. W. and F.T. n.m.r. spectroscopy. Literature data for benzene, cyclohexane and chlorobenzene diluted by CC14 and CS2 are used to show that the Hill theory affords the best estimation of their correlation times but appears to be mass dependent. Evaluation of the T1 of the mesitylene protons indicates that a combined Hill-Bloembergen-Purcell-Pound model gives an accurate estimation of T1; subsequently this was shown to be due to cancellation of errors in the calculated intra and intemolecular components. Three experimental methods for the separation of the intra and intermolecular relaxation times are described. The relaxation times of the 13C proton satellite of neat bezene, 1,4 dioxane and mesitylene were measured. Theoretical analyses of the data allow the calculation of Tl intra. Studies of intermolecular NOE's were found to afford a general method of separating observed T1's into their intra and intermolecular components. The aryl 1H and corresponding 13C T1 values and the NOE for the ring carbon of mesitylene in CC14 and C6H12-TMS have been used in combination to determine T1intra and T1inter. The Hill and B.P.P. models are shown to predict similarly inaccurate values for T1linter. A buffeting contribution to T1inter is proposed which when applied to the BPP model and to the Gutowsky-Woessner expression for T1inter gives an inaccuracy of 12% and 6% respectively with respect to theexperimentally based T1inter.
Resumo:
A new bridge technique for the measurement of the dielectric absorption of liquids and solutions at microwave frequencies has been described and its accuracy assessed. 'l'he dielectric data of the systems studied is discussed in terms of the relaxation processes contributing to the dielectric absorption and the apparent dipole moments. Pyridine, thiophen and furan in solution have a distribution of relaxation times which may be attributed to the small size of the solute molecules relative to the solvent. Larger rigid molecules in solution were characterized by a single relaxation time as would be anticipated from theory. The dielectric data of toluene, ethyl-, isopropyl- and t-butylbenzene as pure liquids and in solution were described by two relaxation times, one identified with molecular re-orientation and a shorter relaxation time.· The subsequent work was investigation of the possible explanations of this short relaxation process. Comparable short relaxation times were obtained from the analysis of the dielectric data of solutions of p-chloro- and p-bromotoluene below 40°C, o- and m-xylene at 25°C and 1-methyl- and 2 methylnaphthalene at 50 C. Rigid molecules of similar shapes and sizes were characterized by a single relaxation time identified with molecular re-orientation. Contributions from a long relaxation process attributed to dipolar origins were reported for solutions of nitrobenzene, benzonitrile and p-nitrotoluene. A short relaxation process of possible dipolar origins contributed to the dielectric absorption of 4-methyl- and 4-t-butylpyridine in cyclohexane at 25°C. It was concluded that the most plausible explanation of the short relaxation process of the alkyl-aryl hydrocarbons studied appears to be intramolecular relaxation about the alkyl-aryl bond. Finally the mean relaxation times of some phenylsubstituted compounds were investigated to evaluate any shortening due to contributions from the process of relaxation about the phenyl-central atom bond. The relaxation times of triphenylsilane and phenyltrimethylsilane were significantly short.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,
Resumo:
The models of teaching social sciences and clinical practice are insufficient for the needs of practical-reflective teaching of social sciences applied to health. The scope of this article is to reflect on the challenges and perspectives of social science education for health professionals. In the 1950s the important movement bringing together social sciences and the field of health began, however weak credentials still prevail. This is due to the low professional status of social scientists in health and the ill-defined position of the social sciences professionals in the health field. It is also due to the scant importance attributed by students to the social sciences, the small number of professionals and the colonization of the social sciences by the biomedical culture in the health field. Thus, the professionals of social sciences applied to health are also faced with the need to build an identity, even after six decades of their presence in the field of health. This is because their ambivalent status has established them as a partial, incomplete and virtual presence, requiring a complex survival strategy in the nebulous area between social sciences and health.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior.
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
This postdoctoral study on the application of the RIME intervention in women that had undergone mastectomy and were in treatment, aimed to promote psychospiritual and social transformations to improve the quality of life, self-esteem and hope. A total of 28 women participated and were randomized into two groups. Brief Psychotherapy (PB) (average of six sessions) was administered in the Control Group, and RIME (three sessions) and BP (average of five sessions) were applied in the RIME Group. The quantitative results indicated a significant improvement (38.3%) in the Perception of Quality of Life after RIME according to the WHOQOL, compared both to the BP of the Control Group (12.5%), and the BP of the RIME Group (16.2%). There was a significant improvement in Self-esteem (Rosenberg) after RIME (14.6%) compared to the BP of the Control Group (worsened 35.9%), and the BP of the RIME Group (8.3%). The improvement in well-being, considering the focus worked on (Visual Analog Scale), was significant in the RIME Group (bad to good), as well as in the Control Group (unpleasant to good). The qualitative results indicated that RIME promotes creative transformations in the intrapsychic and interpersonal dimensions, so that new meanings and/or new attitudes emerge into the consciousness. It was observed that RIME has more strength of psychic structure, ego strengthening and provides a faster transformation that BP, therefore it can be indicated for crisis treatment in the hospital environment.
Resumo:
To characterize the relaxation induced by the soluble guanylate cyclase (sGC) activator, BAY 60-2770 in rabbit corpus cavernosum. Penis from male New Zealand rabbits were removed and fours strips of corpus cavernosum (CC) were obtained. Concentration-response curves to BAY 60-2770 were carried out in the absence and presence of inhibitors of nitric oxide synthase, L-NAME (100 μM), sGC, ODQ (10 μM) and phosphodiestarase type 5, tadalafil (0.1 μM). The potency (pEC50) and maximal response (Emax) values were determined. Second, electrical-field stimulation (EFS)-induced contraction or relaxation was realized in the absence and presence of BAY 60-2770 (0.1 or 1 μM) alone or in combination of ODQ (10 μM). In the case of EFS-induced relaxation two protocols were realized: 1) ODQ (10 μM) was first incubated for 20 min and then BAY 60-2770 (1 μM) was added for another 20 min (ODQ + BAY 60-2770). In different CC strips, BAY 60-2770 was incubated for 20 min followed by another 20 min with ODQ (BAY 60-2770 + ODQ). The intracellular levels of cyclic guanosine monophosphate (cGMP) were also determined. BAY 60-2770 potently relaxed rabbit CC with pEC50 and Emax values of 7.58 ± 0.19 and 81 ± 4%, respectively. The inhibitors ODQ (n=7) or tadalafil (n=7) produced 4.2- and 6.3-leftward shifts, respectively in BAY 60-2770-induced relaxation without interfering on the Emax values. The intracellular levels of cGMP were augmented after stimulation with BAY 60-2770 (1 μM) alone, whereas its co-incubation with ODQ produced even higher levels of cGMP. The EFS-induced contraction was reduced in the presence of BAY 60-2770 (1 μM) and this inhibition was even greater when BAY 60-2770 was co-incubated with ODQ. The nitrergic stimulation induced CC relaxation, which was abolished in the presence of ODQ. BAY 60-2770 alone increased the amplitude of relaxation. Co-incubation of ODQ and BAY 60-2770 did not alter the relaxation in comparison with ODQ alone. Interestingly, when BAY 60-2770 was incubated prior to ODQ, EFS-induced relaxation was partly restored in comparison with ODQ alone or ODQ + BAY 60-2770. Considering that the relaxation induced by the sGC activator, BAY 60-2770 was increased after sGC oxidation and unaltered in the absence of nitric oxide, these class of substances are advantageous over sGC stimulators or PDE5 inhibitors for the treatment in those patients with erectile dysfunction and high endothelial damage. This article is protected by copyright. All rights reserved.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME). METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP plasma levels were measured by ELISA. RESULTS: In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt) that was induced by L-NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction. Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats that were treated with L-NAME + sildenafil. CONCLUSION: The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological effects of L-NAME in cardiac myocytes is mediated (at least in part) by the inhibition of phosphodiesterase-5.
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Resumo:
It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-vanishing total fermionic charge.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.