995 resultados para Andaman-Sumatra-JavaTrench-Arc Region
Resumo:
Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This study was aim to describe the indigenous knowledge of farmers at Nagari Padang laweh Malalo (NPLM) and their adaptability to climate change. Not only the water scarcity is feared, but climate change is also affecting their food security. Local food security can be achieved if biodiversity in their surrounding area is suitable to the local needs. The study was conducted by using Participatory Rural Appraisal (PRA) such as observation and discussion. The combination of in depth interview, life history, semi structure questionnaire, pictures, mapping and expert interviews was implemented. Data was analyzed by using MAXQDA 10 and F4 audio analysis software. The result shows awareness of the people and scarcity of water conditions has allowed the people of NPLM to face this challenge with wisdom. Aia adat (water resources controlled and regulate by custom) is one of their strategies to distribute the water. The general rule is that irrigation will flow from 6 pm – 6 am regularly to all farm land under supervision of kapalo banda. When rains occur, water resources can be used during the day without special supervision. They were used traditional knowledge to manage water resources for their land and daily usage. This study may be helpful for researcher and other farmers in different region to learn encounter water scarcity.
Resumo:
Combined optical and radar observations of two breakup-like auroral events near the polar cap boundary, within 74–76° MLAT and 1210 – 1240 UT (roughly 1540 – 1610 MLT) on 9 Jan. 1989 are reported. A two-component structure of the auroral phenomenon is indicated, with a local intensification of the pre-existing arc as well as a separate, tailward moving discrete auroral event on the poleward side of the background aurora, close to the reversal between well-defined zones of sunward and tailward ion flows. The all-sky TV observations do not indicate a connection between the two components, which also show different optical spectral composition. The 16 MLT background arc is located on sunward convecting field lines, as opposed to the 12–14 MLT auroral emission observed on this day. Although the magnetospheric plasma source (s) of the 16 MLT events are not easily identified from these ground-based data alone, it is suggested that the lower and higher latitude components, may map to the plasma sheet boundary layer and along open field lines to the magnetopause boundary, respectively. The events occur at the time of enhancements of westward ionospheric ion flow and corresponding eastward electrojet current south of 74° MLAT. Thus, they seem to be very significant events, involving periodic (10 min period), tailward moving filaments of field-aligned current/discrete auroral emission at the 16 MLT polar cap boundary.
Resumo:
O Batólito Cerro Porã é um corpo de aproximadamente 30 por 4 km de extensão, localizado na região de Porto Murtinho, Mato Grosso do Sul. Situa-se nos domínios do Terreno Rio Apa, porção sul do Cráton Amazônico. Constitui-se pela Fácies sienogranítica rosa e Fácies monzogranítica cinza. A primeira é caracterizada por textura equi a, essencialmente, inequigranular xenomórfica e pela presença constante de intercrescimentos gráfico e granofíric; constitui-se por feldspatos alcalinos, quartzo e plagioclásio, tendo biotita como único máfico primário. A Fácies monzogranítica cinza apresenta textura porfirítica, com uma matriz de granulação fina gráfica a granofírica e consiste de quartzo, plagioclásio, feldspatos alcalinos e agregados máficos (biotita e anfibólio). Ambas foram metamorfizadas na fácies xisto verde e a Fácies sienogranítica rosa mostra-se milonitizada quando em zonas de cisalhamento. Foi identificado um evento deformacional dúctil-rúptil originado em regime compressivo, responsável pela geração de xistosidade e lineação de estiramento mineral. A Zona de Cisalhamento Esperança relaciona-se a esta fase e reflete a história cinemática convergente, reversa a de cavalgamento, com transporte de topo para NWW. Quimicamente, esses litotipos classificam-se como granitoides do tipo A2 da série alcalina potássica saturada em sílica. Determinação geocronológica obtida pelo método U-Pb (SHRIMP) em zircão, forneceu idade de 1749 ±45 Ma para sua cristalização. Do ponto vista geotectônico, admite-se que o Granito Cerro Porã corresponda a um magmatismo associado a um arco vulcânico desenvolvido no Estateriano e que sua colocação se deu no estágio tardi a pós-orogênico.
Resumo:
We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung des 570 Ma alten, neoproterozoischen Agardagh - Tes-Chem Ophioliths (ATCO) in Zentralasien. Dieser Ophiolith liegt südwestlich des Baikalsees (50.5° N, 95° E) und wurde im frühen Stadium der Akkretion des Zentralasiatischen Mobilgürtels auf den nordwestlichen Rand des Tuvinisch-Mongolischen Mikrokontinentes aufgeschoben. Bei dem Zentralasiatische Mobilgürtel handelt es sich um einen riesigen Akkretions-Subduktionskomplex, der heute das größte zusammenhängende Orogen der Erde darstellt. Im Rahmen dieser Arbeit wurden eine Reihe plutonischer und vulkanischer Gesteine, sowie verschiedene Mantelgesteine des ATCO mittels mikroanalytischer und geochemischer Verfahren untersucht (Elektronenstrahlmikrosonde, Ionenstrahlmikrosonde, Spurenelement- und Isotopengeochemie). Die Auswertung dieser Daten ermöglichte die Entwicklung eines geodynamisch-petrologischen Modells zur Entstehung des ATCO. Die vulkanischen Gesteine lassen sich aufgrund ihrer Spurenelement- und Isotopenzusammensetzung in inselbogenbezogene und back-arc Becken bezogene Gesteine (IA-Gesteine und BAB-Gesteine) unterscheiden. Darüber hinaus gibt es eine weitere, nicht eindeutig zuzuordnende Gruppe, die hauptsächlich mafische Gänge umfasst. Der grösste Teil der untersuchen Vulkanite gehört zur Gruppe der IA-Gesteine. Es handelt sich um Al-reiche Basalte und basaltische Andesite, welche aus einem evolvierten Stammmagma mit Mg# 0.60, Cr ~ 180 µg/g und Ni ~ 95 µg/g hauptsächlich durch Klinopyroxenfraktionierung entstanden sind. Das Stammmagma selbst entstand durch Fraktionierung von ca. 12 % Olivin und geringen Anteilen von Cr-Spinell aus einer primären, aus dem Mantel abgeleiteten Schmelze. Die IA-Gesteine haben hohe Konzentrationen an inkompatiblen Spurenelementen (leichte-(L)- Seltenerdelement-(SEE)-Konzentrationen etwa 100-fach chondritisch, chondrit-normierte (La/Yb)c von 14.6 - 5.1), negative Nb-Anomalien (Nb/La = 0.37 - 0.62) und niedrige Zr/Nb Verhältnisse (7 - 14) relativ zu den BAB-Gesteinen. Initiale eNd Werte liegen bei etwa +5.5, initiale Bleiisotopenverhältnisse sind: 206Pb/204Pb = 17.39 - 18.45, 207Pb/204Pb = 15.49 - 15.61, 208Pb/204Pb = 37.06 - 38.05. Die Anreicherung lithophiler inkompatibler Spurenelemente (LILE) in dieser Gruppe ist signifikant (Ba/La = 11 - 130) und zeigt den Einfluss subduzierter Komponenten an. Die BAB-Gesteine repräsentieren Schmelzen, die sehr wahrscheinlich aus der gleichen Mantelquelle wie die IA-Gesteine stammen, aber durch höhere Aufschmelzgrade (8 - 15 %) und ohne den Einfluss subduzierter Komponenten entstanden sind. Sie haben niedrigere Konzentrationen an inkompatiblen Spurenelementen, flache SEE-Muster ((La/Yb)c = 0.6 - 2.4) und höhere initiale eNd Werte zwischen +7.8 und +8.5. Nb Anomalien existieren nicht und Zr/Nb Verhältnisse sind hoch (21 - 48). Um die geochemische Entwicklung der vulkanischen Gesteine des ATCO zu erklären, sind mindestens drei Komponenten erforderlich: (1) eine angereicherte, ozeaninselbasalt-ähnliche Komponente mit hoher Nb Konzentration über ~ 30 µg/g, einem niedrigen Zr/Nb Verhältnis (ca. 6.5), einem niedrigen initialen eNd Wert (um 0), aber mit radiogenen 206Pb/204Pb-, 207Pb/204Pb- und 208Pb/204Pb-Verhältnissen; (2) eine N-MORB ähnliche back-arc Becken Komponente mit flachem SEE-Muster und einem hohen initialen eNd Wert von mindestens +8.5, und (3) eine Inselbogen-Komponente aus einer verarmten Mantelquelle, welche durch die abtauchende Platte geochemisch modifiziert wurde. Die geochemische Entstehung der ATCO Vulkanite lässt sich dann am besten durch eine Kombination aus Quellenkontamination, fraktionierte Kristallisation und Magmenmischung erklären. Geodynamisch gesehen entstand der ATCO sehr wahrscheinlich in einem intraozeanischen Inselbogen - back-arc System. Bei den untersuchten Plutoniten handelt es sich um ultramafische Kumulate (Wehrlite und Pyroxenite) sowie um gabbroische Plutonite (Olivin-Gabbros bis Diorite). Die geochemischen Charakteristika der mafischen Plutonite sind deutlich unterschiedlich zu denen der vulkanischen Gesteine, weshalb sie sehr wahrscheinlich ein späteres Entwicklungsstadium des ATCO repräsentieren. Die Spurenelement-Konzentrationen in den Klinopyroxenen der ultramafischen Kumulate sind extrem niedrig, mit etwa 0.1- bis 1-fach chondritischen SEE-Konzentrationen und mit deutlich LSEE-verarmten Mustern ((La/Yb)c = 0.27 - 0.52). Berechnete Gleichgewichtsschmelzen der ultramafischen Kumulate zeigen grosse Ähnlichkeit zu primären boninitischen Schmelzen. Die primären Magmen waren daher boninitischer Zusammensetzung und entstanden in dem durch vorausgegangene Schmelzprozesse stark verarmten Mantelkeil über einer Subduktionszone. Niedrige Spurenelement-Konzentrationen zeigen einen geringen Einfluss der abtauchenden Platte an. Die Spurenelement-Konzentrationen der Gabbros sind ebenfalls niedrig, mit etwa 0.5 - 10-fach chondritischen SEE-Konzentrationen und mit variablen SEE-Mustern ((La/Yb)c = 0.25 - 2.6). Analog zu den Vulkaniten der IA-Gruppe haben alle Gabbros eine negative Nb-Anomalie mit Nb/La = 0.01 - 0.31. Die initialen eNd Werte der Gabbros variieren zwischen +4.8 und +7.1, mit einem Mittelwert von +5.9, und sind damit identisch mit denen der IA-Vulkanite. Bei den untersuchten Mantelgesteinen handelt es sich um teilweise serpentinisierte Dunite und Harzburgite, die alle durch hohe Mg/Si- und niedrige Al/Si-Verhältnisse gekennzeichnet sind. Dies zeigt einen refraktären Charakter an und steht in guter Übereinstimmung mit den hohen Cr-Zahlen (Cr#) der Spinelle (bis zu Cr# = 0.83), auf deren Basis der Aufschmelzgrad der residuellen Mantelgesteine berechnet wurde. Dieser beträgt etwa 25 %. Die geochemische Zusammensetzung und die petrologischen Daten der Ultramafite und Gabbros lassen sich am besten erklären, wenn man für die Entstehung dieser Gesteine einen zweistufigen Prozess annimmt. In einer ersten Stufe entstanden die ultramafischen Kumulate unter hohem Druck in einer Magmenkammer an der Krustenbasis, hauptsächlich durch Klinopyroxen-Fraktionierung. Bei dieser Magmenkammer handelte es sich um ein offenes System, dem von unten laufend neue Schmelze zugeführt wurde, und aus dem im oberen Bereich evolviertere Schmelzen geringerer Dichte entwichen. Diese evolvierten Schmelzen stiegen in flachere krustale Bereiche auf und bildeten dort meist isolierte Intrusionskörper. Diese Intrusionskörper erstarrten ohne Magmen-Nachschub, weshalb petrographisch sehr unterschiedliche Gesteine entstehen konnten. Eine geochemische Modifikation der abkühlenden Schmelzen erfolgte allerdings durch die Assimilation von Nebengestein. Da innerhalb der Gabbros keine signifikante Variation der initalen eNd Werte existiert, handelte es sich bei dem assimilierten Material hauptsächlich um vulkanische Gesteine des ATCO und nicht um ältere, möglicherweise kontinentale Kruste.
Resumo:
In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.
Resumo:
In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.
Resumo:
Given a short-arc optical observation with estimated angle-rates, the admissible region is a compact region in the range / range-rate space defined such that all likely and relevant orbits are contained within it. An alternative boundary value problem formulation has recently been proposed where range / range hypotheses are generated with two angle measurements from two tracks as input. In this paper, angle-rate information is reintroduced as a means to eliminate hypotheses by bounding their constants of motion before a more computationally costly Lambert solver or differential correction algorithm is run.
Resumo:
Early arc volcanism during Eocene to Oligocene in the Izu forearc region was investigated during ODP Legs 125 and 126 in 1989, and effusive and intrusive volcanics were recovered from Leg 125 Site 786. These rocks were all classified into boninites and associated rocks by Leg 125 Shipboard Scientific Party, and they concluded that boninitic volcanism had occurred before 40 Ma, and arc tholeiitic volcanism began after 40 Ma. In this study, lava flows and breccias that classified into boninite series are divided into two groups, tholeiite and boninite, based on petrographical and petrological properties. Both series are also distinguished by bulk rock composition. It is considered that the sources of both rock types have similar depleted compositions because of their similar, very low bulk HFSE concentrations. We suggest that boninitic and tholeiitic volcanism occurred closely in time and space, and reflected different temperature and water condition.
Resumo:
Quaternary marine tephras in the Izu-Bonin Arc offer significant information about explosive volcanic activities of the arc. Visual core descriptions, petrographic examinations, and chemical and grain-size analyses were conducted on tephras of backarc, arc, and forearc origin. Tephras are black and white and occur in simple and multiple modes with mixed and nonmixed ashes of black and white glass shards. The grain size distributions of the tephras are classified into three categories: coarse, white pumiceous, and fine white and black well-sorted types. The frequency of occurrence of the white and black tephras differs within the tectonic settings of the arc. Chemically, the Quaternary tephras in this region belong to low-alkali tholeiitic series with lower K2O and TiO2 than normal ordinary arc volcanic materials. Several tephras from different sites along the forearc correlate with each other and with tephras in the Shikoku Basin site and with Aogashima volcanics. These volcanic ashes resemble those in other backarc rifting areas, such as in the Fiji, Okinawa (Ryukyu), and Mariana regions.
Resumo:
Tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on age of the lithosphere beneath basins of various origin in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded 65 Ma (Cretaceous-Paleocene boundary) age for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat flows in the Akademii Nauk Rise, underlain by the thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with high negative gradient of gravity anomalies in this area. Calculations yielded 36 Ma (Early Oligocene) age and lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of back-arc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (Early Miocene) for the Deryugin Basin, 12 Ma (Middle Miocene) for the TINRO Basin, and 23 Ma (Late Oligocene) for the West Kamchatka Trough. These estimates agree with formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO Basins and the West Kamchatka Trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka Trough possesses better reservoir properties compared to the TINRO and Deryugin Basins. The latter is promising for generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the base of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.
Resumo:
New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
A tephrochronology of the past 5 Ma is constructed with ash layers recovered from Neogene sediments during drilling at ODP Leg 121 Site 758 on northern Ninetyeast Ridge. The several hundred tephra layers observed in the first 80 m of cores range in thickness from a few millimeters to 34 cm. Seventeen tephra layers, at least 1 cm thick, were sampled and analyzed for major elements. Relative ages for the ash layers are estimated from the paleomagnetic and d18O chronostratigraphy. The ash layers comprise about 1.7% by volume of the sediments recovered in the first 72 m. The median grain size of the ashes is about 75 ?m, with a maximum of 150 ?m. The ash consists of rhyolitic bubble junction and pumice glass shards. Blocky and platy shards are in even proportion (10%-30%) and are dominated by bubble wall shards (70%-90%). The crystal content of the layers is always less than 2%, with Plagioclase and alkali feldspar present in nearly every layer. Biotite was observed only in the thickest layers. The major element compositions of glass and feldspar reflect fractionation trends. Three groupings of ash layers suggest different provenances with distinct magmatic systems. Dating by d18O and paleomagnetic reversals suggests major marine ash-layer-producing eruptions (marine tephra layers > 1 cm in thickness) occur roughly every approximately 414,000 yr. This value correlates well with landbased studies and dates of Pleistocene Sumatran tuffs (average 375,000-yr eruptive interval). Residence times of the magmatic systems defined by geochemical trends are 1.583, 2.524, and 1.399 Ma. The longest time interval starts with the least differentiated magma. The Sunda Arc, specifically Sumatra, is inferred to be the source region for the ashes. Four of the youngest five ash layers recovered correlate in time and in major element chemistry to ashes observed on land at the Toba caldera.