991 resultados para Analytical Spectral Devices (ASD), FieldSpec Pro


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil degradation is a major problem in the agriculturally dominated country of Tajikistan, which makes it necessary to determine and monitor the state of soils. For this purpose a soil spectral library was established as it enables the determination of soil properties with relatively low costs and effort. A total of 1465 soil samples were collected from three 10x10 km test sites in western Tajikistan. The diffuse reflectance of the samples was measured with a FieldSpec PRO FR from ASD in the spectral range from 380 to 2500 nm in laboratory. 166 samples were finally selected based on their spectral information and analysed on total C and N, organic C, pH, CaCO₃, extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. Multiple linear regression was used to set up the models. Two third of the chemically analysed samples were used to calibrate the models, one third was used for hold-out validation. Very good prediction accuracy was obtained for total C (R² = 0.76, RMSEP = 4.36 g kg⁻¹), total N (R² = 0.83, RMSEP = 0.30 g kg⁻¹) and organic C (R² = 0.81, RMSEP = 3.30 g kg⁻¹), good accuracy for pH (R² = 0.61, RMSEP = 0.157) and CaCO3(R² = 0.72, RMSEP = 4.63 %). No models could be developed for extractable P, exchangeable Ca, Mg and K, and the fractions clay, silt and sand. It can be concluded that the spectral library approach has a high potential to substitute standard laboratory methods where rapid and inexpensive analysis is required.