976 resultados para Ammonium sulfide
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
Selostus: Suomen maaperän fosforin tutkiminen 1900-luvulla ja viljavuustutkimuksen kehittäminen
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.
Resumo:
We previously showed in a 3D rat brain cell in vitro model for glutaric aciduria type-I that repeated application of 1mM 3-hydroxy-glutarate (3-OHGA) caused ammonium accumulation, morphologic alterations and induction of non-apoptotic cell death in developing brain cells. Here, we performed a dose-response study with lower concentrations of 3- OHGA.We exposed our cultures to 0.1, 0.33 and 1mM 3-OHGA every 12h over three days at two developmental stages (DIV5-8 and DIV11-14). Ammonium accumulation was observed at both stages starting from 0.1mM 3-OHGA, in parallel with a glutamine decrease. Morphological changes started at 0.33mM with loss of MBP expression and loss of astrocytic processes. Neurons were not substantially affected. At DIV8, release of LDH in the medium and cellular TUNEL staining increased from 0.1mM and 0.33mM 3-OHGA exposure, respectively. No increase in activated caspase-3 was observed. We confirmed ammonium accumulation and non-apoptotic cell death of brain cells in our in vitro model at lower 3-OHGA concentrations thus strongly suggesting that the observed effects are likely to take place in the brain of affected patients. The concomitant glutamine decrease suggests a defect in the astrocyte ammonium buffering system. Ammonium accumulation might be the cause of non-apoptotic cell death.
Resumo:
The establishment of legislative rules about explosives in the eighties has reduced the illicit use of military and civilian explosives. However, bomb-makers have rapidly taken advantage of substances easily accessible and intended for licit uses to produce their own explosives. This change in strategy has given rise to an increase of improvised explosive charges, which is moreover assisted by the ease of implementation of the recipes, widely available through open sources. While the nature of the explosive charges has evolved, instrumental methods currently used in routine, although more sensitive than before, have a limited power of discrimination and allow mostly the determination of the chemical nature of the substance. Isotope ratio mass spectrometry (IRMS) has been applied to a wide range of forensic materials. Conclusions drawn from the majority of the studies stress its high power of discrimination. Preliminary studies conducted so far on the isotopic analysis of intact explosives (pre-blast) have shown that samples with the same chemical composition and coming from different sources could be differentiated. The measurement of stable isotope ratios appears therefore as a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source. However, much research is still needed to assess the validity of the results in order to use them either in an operational prospect or in court. Through the isotopic study of black powders and ammonium nitrates, this research aims at evaluating the contribution of isotope ratio mass spectrometry to the investigation of explosives, both from a pre-blast and from a post-blast approach. More specifically, the goal of the research is to provide additional elements necessary to a valid interpretation of the results, when used in explosives investigation. This work includes a fundamental study on the variability of the isotopic profile of black powder and ammonium nitrate in both space and time. On one hand, the inter-variability between manufacturers and, particularly, the intra-variability within a manufacturer has been studied. On the other hand, the stability of the isotopic profile over time has been evaluated through the aging of these substances exposed to different environmental conditions. The second part of this project considers the applicability of this high-precision technology to traces and residues of explosives, taking account of the characteristics specific to the field, including their sampling, a probable isotopic fractionation during the explosion, and the interferences with the matrix of the site.
Resumo:
L'hydrogène sulfuré (H2S) est un gaz toxique retrouvé à l'état naturel et dans certains milieux industriels, à l'origine d'intoxication accidentelle, mais pouvant être également et facilement synthétisé de manière domestique. Des cas de suicide par hydrogène sulfuré ont ainsi été décrits à partir de produits ménagers dans la littérature depuis 2009, aux États-Unis et au Japon. La plupart présentait des délais post mortem (DPM) courts (moins de 72 heures). En France, les intoxications aiguës à l'H2S demeurent rares et sont le plus souvent liées à des accidents du travail. Nous rapportons ici le cas d'un homme âgé de 37 ans découvert à son domicile, en état de décomposition avancée avec un DPM de deux mois. Compte tenu de la présence d'une importante signalétique avisant du danger potentiel d'exposition à l'H2S, des mesures de précaution ont été mises en oeuvre dès la découverte du corps et poursuivies jusqu'aux opérations d'autopsie. Les analyses toxicologiques ont confirmé la présence d'H2S au niveau des prélèvements de cerveau et de muscle. Le cas présenté constitue le premier cas de suicide avec un délai post mortem long à l'H2S rapporté en France. Dans la littérature, les constatations macroscopiques à l'autopsie ne sont pas spécifiques tandis que les analyses toxicologiques reposent essentiellement sur la recherche et la quantification d'H2S. En raison de leur redistribution post mortem, les résultats de ces analyses doivent être interprétés avec prudence, et encore plus en cas de délai post mortem long et de phénomènes de putréfaction qui peuvent également être une source de génération d'H2S post mortem. Hydrogen sulfide (H2S) which is a poisonous gas found either in the natural state or in industrial environments and potentially linked with accidental intoxication, can also be easily handmade. Several cases of suicide by inhaling H2S produced by mixing household products have been reported in the literature since 2009 in USA and Japan. Most of them involved short post mortem delays up to 72 hours. In France, acute H2S poisoning remains rare and mostly accidental. We report the case of a 37-year-old man found at home, in an advanced stage of decomposition with a 2-month post mortem delay. As numerous warning signs about a high risk of H2S exposure were present, some precautionary measures were taken from the discovery of the cadaver to the autopsy. Toxicological analyses confirmed the presence of H2S in brain and muscle samples. This observation is the first French case with a long post mortem delay. As macroscopic findings in such cases are described to be unspecific in literature, toxicological analysis must focus on the detection and the quantification of H2S. However, due to the phenomena of post mortem drug redistribution and neo-formation, their results should be interpreted with much more caution when the post mortem delay is long. The potential increase in such voluntary-intoxication-related-deaths in France, similar to the recent Japanese and American waves of suicides, requires for forensic scientists, a good knowledge of both thanatological and toxicological pictures, and precautionary measures to adopt in such situations.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
Resumo:
In this work, a smectite clay from the State of Paraiba, Brazil, was treated with six different types of ammonium salts, which is an usual method to enhance the affinity between the clay and polymer for the preparation of nanocomposites. The clays, before and after modification, were characterized by X ray diffraction. The conformation of the salts within the platelets of the clay depended on the number of long alkyl chains of the salt. The thermal stability of the clays was also studied. The ammonium salts thermal decomposition was explained in light of their position within the organoclays.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
Two simple sensitive and cost-effective spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsules using ceric ammonium sulphate (CAS), iron (II), orthophenanthroline and thiocyanate as reagents. In both methods, an acidic solution of lansoprazole is treated with a measured excess of CAS followed by the determination of unreacted oxidant by two procedures involving different reaction schemes. The first method involves the reduction of residual oxidant by a known amount of iron(II), and the unreacted iron(II) is complexed with orthophenanthroline at a raised pH, and the absorbance of the resulting complex measured at 510 nm (method A). In the second method, the unreacted CAS is reduced by excess of iron (II), and the resulting iron (III) is complexed with thiocyanate in the acid medium and the absorbance of the complex measured at 470 nm (method B). In both methods, the amount CAS reacted corresponds to the amount of LPZ. In method A, the absorbance is found to increase linearly with the concentration of LPZ where as in method B a linear decrease in absorbance occurs. The systems obey Beer's law for 2.5-30 and 2.5-25 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 8.1×10³ and 1.5×10(4) L mol-1cm-1 . The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim. No interference was observed from the concomitant substances normally added to capsules.
Resumo:
A simple, rapid and sensitive spectrophotometric method for the determination of captopril (CPT) in pharmaceutical formulations is proposed. This method is based on the reduction reaction of ammonium molybdate, in the presence of sulphuric acid, for the group thiol of CPT, producing a green compound (λ max 407 nm). Beer's law is obeyed in a concentration range of 4.60 x 10-4 - 1.84 x 10-3 mol l-1 of CPT with an excellent correlation coefficient (r = 0.9995). The limit of detection and limit of quantification were 7.31 x 10-6 e 2.43 x 10-5 mol l-1 of CPT, respectively. The proposed method was successfully applied to the determination of CPT in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the official reported method at 95 % confidence level.
Resumo:
This work was done at a gold mine company in Paracatu, MG, Brazil, and was conducted from March 2000 to November 2005. The substrate (spoil) studied was a phillite rock which contains sulfides such as pyrite and arsenopyrite. This study aimed to evaluate the survival and growth of plant species on different combinations of substrate layers over the spoil. These layers were a cover layer and a sealing layer, both deposited over the spoil. The treatment 1 had saprolite (B1) in the sealing layer (SL) and B1 with liming (B1L) in the cover layer (CL). The treatment 2 had B1 in SL and B1L + soil with liming (SoL) in the CL. The treatment 3 had B1 + SoL in the SL and B1L in the CL. The treatment 4 had B1 + SoL in the SL and B1L + SoL in the CL. The plant species used were Acacia farnesiana, A. holosericea, A. polyphylla, Albizia lebbeck, Clitoria fairchildiana, Flemingia sp., Mimosa artemisiana, M. bimucronata e Enterolobium contortisiliquum. Forty and 57 months after planting, collardiameter, height, and living plants were evaluated. The greatest survival rate was oobservedintreatmentwith B horizon of an Oxisoil in both layers, with 80 %. In general, M. bimucronata and A. farnesiana species showed the highest survival rate. The arsenic-content by Mehlich 3 in the cover layer ranged from 0.00 to 14.69 mg dm- 3 among treatments. The experimental results suggest that layers combinations above the sulfide substrate allow the rapid revegetation of the spoil.
Resumo:
Hydrogen sulfide is toxic and hazardous pollutant. It has been under great interest for past few years because of all the time tighten environmental regulations and increased interest of mining. Hydrogen sulfide gas originates from mining and wastewater treatment systems have caused death in two cases. It also causes acid rains and corrosion for wastewater pipelines. The aim of this master thesis was to study if chemically modified cellulose nanocrystals could be used as adsorbents to purify hydrogen sulfide out from water and what are the adsorption capacities of these adsorbents. The effects of pH and backgrounds on adsorption capacities of different adsorbents are tested. In theoretical section hydrogen sulfide, its properties and different purification methods are presented. Also analytical detection methods for hydrogen sulfide are presented. Cellulose nano/microcrystals, properties, application and different modification methods are discussed and finally theory of adsorption and modeling of adsorption is shortly discussed. In experimental section different cellulose nanocrystals based adsorbents are prepared and tested at different hydrogen sulfide concentrations and in different conditions. Result of experimental section was that the highest adsorption capacity at one component adsorption had wet MFC/CaCO3. At different pH the adsorption capacities of adsorbents changed quite dramatically. Also change of hydrogen sulfide solution background did have effect on adsorption capacities. Although, when tested adsorbents’ adsorption capacities are compared to those find in literatures, it seems that more development of MFC based adsorbents is needed.