915 resultados para Ambient pressures
Resumo:
The focus of Cents and Sustainability is to respond to the call by Dr Gro Brundtland in the seminal book Our Common Future to achieve, 'a new era of economic growth - growth that is forceful and at the same time socially and environmentally sustainable'. With the 20th anniversary of Our Common Future in 2007, it is clearly time to re-examine this important work in a modern global context. Using the framework of ‘Decoupling Economic Growth from Environmental Pressures’, Cents and Sustainability investigates a range of new evidence and research in order to develop a deeper understanding of how, and under what conditions, this 'forceful sustainable growth' is possible. With an introduction by Dr Jim MacNeill (former Secretary General to the Brundtland Commission, and former Director, OECD Environment Directorate 1978 -1984), the book will carry forewords from Dr Gro Brundtland (former Chair of the World Commission on Environment and Development), Dr Rajendra Pachauri (Chief, Intergovernmental Panel on Climate Change (IPCC), and joint recipient of the 2007 Nobel Peace Prize on behalf of the IPCC), and Dr Kenneth Ruffing (former Deputy Director and Chief Economist of the OECD Environment Directorate 2000 - 2005). Beginning with a detailed explanation of decoupling theory, along with investigation into a range of issues and barriers to its achievement, the book then focuses on informing national strategies for decoupling. Then putting this into action the book focuses on five key areas of decoupling, namely greenhouse gas emissions, biodiversity, freshwater extraction, waste production, and air pollution, and in each case showing compelling evidence for significant cost effective reductions in environmental pressures. The book concludes with a detailed case study of the groundbreaking application of public interest litigation to combat air pollution in Delhi, India.
Resumo:
Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 μm. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 μm for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated.
Resumo:
Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.
Resumo:
Objectives: To assess the impact of exposure to ambient heat on urolithiasis among outdoor workers in a subtropical city of China. Methods: The 2003–2010 health check data of a shipbuilding company in Guangzhou, China were acquired. 190 cases and 760 matched controls were involved in this study. We assessed the relationship between exposure to ambient heat and urolithiasis for different occupations using conditional logistic regression. Results: Spray painters were most likely to develop urolithiasis (OR = 4.4; 95% CI: 1.7, 11.4), followed by smelter workers (OR = 4.0; 95% CI: 1.8, 9.2), welders (OR = 3.7; 95% CI: 1.9, 7.2), production security and quality inspectors (OR = 2.7; 95% CI: 1.4, 3.0), and assemblers (OR = 2.2; 95% CI: 1.1, 4.3). Overall, outdoor workers were more likely to present with urolithiasis compared with indoor employees (p b 0.05). In addition, workers with longer cumulative exposure time (OR = 1.5; 95% CI: 1.2, 1.8) and abnormal blood pressure (OR = 1.6; 95% CI: 1.0, 2.5) had higher risk for urolithiasis. Conclusions: Our findings demonstrate a significant association between exposure to ambient heat and urolithiasis among outdoor working populations. Public health intervention strategies should be developed to specifically target outdoor occupations.
Resumo:
In this work, 17-polychlorinated dibenzo-pdioxin/furan (PCDD/Fs) isomers were measured in ambient air at four urban sites in Seoul, Korea (from February to June 2009). The concentrations of their summed values RPCDD/Fs) across all four sites ranged from 1,947 (271 WHO05 TEQ) (Jong Ro) to 2,600 (349 WHO05 TEQ) fg/m3 (Yang Jae) with a mean of 2,125 ± 317) fg/m3 (292 WHO05 TEQ fg/m3). The sum values for the two isomer groups of RPCDD and RPCDF were 527 (30 WHO05 TEQ) and 1,598 (263 WHO05 TEQ) fg/m3, respectively. The concentration profile of individual species was dominated by the 2,3,4,7,8-PeCDF isomer, which contributed approximately 36 % of the RPCDD/Fs value. The observed temporal trends in PCDD/F concentrations were characterized by relative enhancement in the winter and spring. The relative contribution of different sources, when assessed by principal component analysis, is explained by the dominance of vehicular emissions along with coal (or gas) burning as the key source of ambient PCDD/Fs in the residential areas studied.
Resumo:
In this paper we describe the preliminary results of a field study which evaluated the use of MiniOrb, a system that employs ambient and tangible interaction mechanisms to allow inhabitants of office environments to report on subjectively perceived office comfort levels. The purpose of this study was to explore the role of ubiquitous computing in the individual control of indoor climate and specifically answer the question to what extent ambient and tangible interaction mechanisms are suited for the task of capturing individual comfort preferences in a non-obtrusive manner. We outline the preliminary results of an in-situ trial of the system.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.
Resumo:
Desalination is considered one of the most suitable areas for the utilization of solar energy, as there are many places in the world where abundant supply of solar energy is available and also there is a great demand for fresh water. An integrated solar heat pump desalination system has been developed at the National University of Singapore. The system also offers the opportunity of water heating and drying utilizing solar, ambient energy and waste heat from air conditioning system, which is conventionally dumped into the environment causing global warming. Desalination is carried out by making use of a single effect of Multi-Effect Distillation (MED) system. Within the desalination chamber, both fl ashing and evaporation of saline water take place. The maximum Coefficient of Performance (COP) of the heat pump system was around 5.8. In the integrated system, the maximum fresh water production rate was 9.6 l h−1 and a Performance Ratio (PR) of 1.2. For only desalination, the system has the potential to produce a maximum of 30 l h−1 of fresh water.
Resumo:
The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the twophase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20-22 oC. In the condenser side, water at 60 oC was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.
Resumo:
Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3 °S), Brisbane (27.5 °S), Canberra (35.3 °S) and Hobart (42.8 °S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median=1.1, IQR: 0.5–2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r=0.23, p<0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r=0.50) and at high latitudes (Hobart, r=0.50; Canberra, r=0.39), to null or even slightly negative correlations, in summer (r=0.01) and at low latitudes (Townsville, r=-0.06; Brisbane, r=-0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.
Resumo:
In recent years, research aimed at identifying and relating the antecedents and consequences of diffusing organizational practices/ideas has turned its attention to debating the international adoption and implementation of the Anglo-American model of corporate governance, i.e., a shareholder-value-orientation (SVO). While financial economists characterize the adoption of an SVO as necessary and performance-enhancing, behavioral scientists have disputed such claims, invoking institutional contingencies in the appropriateness of an SVO. Our study seeks to provide some resolution to the debate by developing an overarching socio-political perspective that links the antecedents and consequences of the adoption of the contested practice of SVO. We test our framework using extensive longitudinal data from 1992-2006 from the largest listed corporations in the Netherlands, and we find a negative relationship between SVO adoption and subsequent firm performance, although this effect is attenuated when accompanied by greater SVO-alignment among major owners and a firm’s visible commitment to an SVO. This study extends prior research on the diffusion of contested organizational practices that has taken a socio-political perspective by offering an original contingency perspective that addresses how and why the misaligned preferences of corporate owners will affect (i) a company’s inclination to espouse an SVO, and (ii) the performance consequences of such misalignment.This study suggests when board members are considering the adoption of new ideas/practices (e.g., SVO), they should consider the contextual fitness of the idea/practice with the firm’s owners and their interests.
Resumo:
This thesis explored how biophilic urbanism, or the integration of natural features into increasingly dense urban environments, has become mainstream in cities around the world. Fourteen factors uncovered through a case study investigation provide insight for decision makers and change agents in Australia to use biophilic urbanism to address impacts of population growth, climate change and resource shortages. The thesis uses an inductive research approach to explore how barriers to the integration of multi-functional vegetated and water design elements into the built environment, such that these become and standard inclusions in urban design and development processes.