997 resultados para Aluminum Metallography - Precipitation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Foodborne illnesses in Australia, including salmonellosis, are estimated to cost over $A1.25 billion annually. The weather has been identified as being influential on salmonellosis incidence, as cases increase during summer, however time series modelling of salmonellosis is challenging because outbreaks cause strong autocorrelation. This study assesses whether switching models is an improved method of estimating weather–salmonellosis associations. Design We analysed weather and salmonellosis in South-East Queensland between 2004 and 2013 using 2 common regression models and a switching model, each with 21-day lags for temperature and precipitation. Results The switching model best fit the data, as judged by its substantial improvement in deviance information criterion over the regression models, less autocorrelated residuals and control of seasonality. The switching model estimated a 5°C increase in mean temperature and 10 mm precipitation were associated with increases in salmonellosis cases of 45.4% (95% CrI 40.4%, 50.5%) and 24.1% (95% CrI 17.0%, 31.6%), respectively. Conclusions Switching models improve on traditional time series models in quantifying weather–salmonellosis associations. A better understanding of how temperature and precipitation influence salmonellosis may identify where interventions can be made to lower the health and economic costs of salmonellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.