951 resultados para Alpine Club
Resumo:
2
Resumo:
v.2 (1854-1860)
Resumo:
v.1 (1847-1853)
Resumo:
3
Resumo:
Pleistocene glacial and interglacial periods have moulded the evolutionary history of European cold-adapted organisms. The role of the different mountain massifs has, however, not been accurately investigated in the case of high-altitude insect species. Here, we focus on three closely related species of non-flying leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae), which are often found in sympatry within the mountain ranges of Europe. After showing that the species concept as currently applied does not match barcoding results, we show, based on more than 700 sequences from one nuclear and three mitochondrial genes, the role of biogeography in shaping the phylogenetic hypothesis. Dating the phylogeny using an insect molecular clock, we show that the earliest lineages diverged more than 1 Mya and that the main shift in diversification rate occurred between 0.36 and 0.18 Mya. By using a probabilistic approach on the parsimony-based dispersal/vicariance framework (MP-DIVA) as well as a direct likelihood method of state change optimization, we show that the Alps acted as a cross-roads with multiple events of dispersal to and reinvasion from neighbouring mountains. However, the relative importance of vicariance vs. dispersal events on the process of rapid diversification remains difficult to evaluate because of a bias towards overestimation of vicariance in the DIVA algorithm. Parallels are drawn with recent studies of cold-adapted species, although our study reveals novel patterns in diversity and genetic links between European mountains, and highlights the importance of neglected regions, such as the Jura and the Balkanic range.
Resumo:
Aquest Projecte Final de Carrera va sorgir per la necessitat que tenia el Club Esportiu Escola Sant Gervasi per poder tenir un control de la seva gestió esportiva mitjançant una aplicació web i poder també emmagatzemar les valoracions que es fan sobre els esportistes del Club. L’aplicació inclou altres funcionalitats com les de poder consultar horaris d’entrenament, calendaris o classificacions. Fent servir tecnologies tals com PHP, HTML, JavaScript i AJAX, s’ha implementat aquesta aplicació que serà de gran utilitat per als coordinadors, entrenadors i jugadors que formen part del Club.
Resumo:
Aim Understanding the stability of realised niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. Location European Alps and Norwegian Finnmark. Methods We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multi-species comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 meters above ground level and (2) elevation distances to the treeline (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. Results We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet, along the 2-m temperature gradient, the cold thermal limits of species in the Alps were lower on average than those in Finnmark. Main conclusion We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit likely modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is likely responsible for the observed differences in realised niches.
Resumo:
Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Moliere have extremely low delta O-18 values (10.3% and 11.3%) and low Sr-87/Sr-86 ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1%,22.4%o and 0.708421-0.708630). The rare earth element (REE) abundances and patterns from La Moliere not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the ``exotic'' teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two ``exotic'' teeth were formed while the sharks frequented a freshwater environment with very low O-18-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (similar to 2300 m) Miocene Alps adjacent to a marginal sea.
Resumo:
Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approaches.
Resumo:
Adoption is frequent in colonial animals where opportunities for dependent young to receive care from nonbiological parents are high. The departure of dependent young from their original family to seek adoption in neighbouring families is thought to be induced by sibling competition for access to limited resources provided by poor-quality parents. We tested this hypothesis in the colonial Alpine swift by manipulating the number of young reared per brood, with the prediction that offspring from enlarged broods switch nests more frequently than those from reduced broods. Although nestling swifts hatch with little locomotor activity, from 20 days until their first flight at 50-70 days they frequently move out of their nests to seek adoption in neighbouring families. Although nestlings reared in experimentally enlarged broods were lighter and their body mass at day 20 after hatching was more variable than in nestlings reared in reduced broods, there was no difference between the two treatments in the frequency of nests switching and in the age when nestlings switched nests for the first time. However, consistent with other evidence that nest switching by nestling swifts evolved as a strategy to reduce ectoparasite load, young from broods with naturally high numbers of the ectoparasitic louse fly Crataerina melbae were more prone to switch nests. This shows that ectoparasitism rather than sibling competition is a key proximate factor promoting the evolution of nest switching in the colonial Alpine swift. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.