149 resultados para Algorithmes
Resumo:
[Français] Une fraction importante des génomes eucaryotes est constituée de Gènes Répétés en Tandem (GRT). Un mécanisme fondamental dans l’évolution des GRT est la recombinaison inégale durant la méiose, entrainant la duplication locale (en tandem) de segments chromosomiques contenant un ou plusieurs gènes adjacents. Différents algorithmes ont été proposés pour inférer une histoire de duplication en tandem pour un cluster de GRT. Cependant, leur utilisation est limitée dans la pratique, car ils ne tiennent pas compte d’autres événements évolutifs pourtant fréquents, comme les inversions, les duplications inversées et les délétions. Cette thèse propose différentes approches algorithmiques permettant d’intégrer ces événements dans le modèle de duplication en tandem classique. Nos contributions sont les suivantes: • Intégrer les inversions dans un modèle de duplication en tandem simple (duplication d’un gène à la fois) et proposer un algorithme exact permettant de calculer le nombre minimal d’inversions s’étant produites dans l’évolution d’un cluster de GRT. • Généraliser ce modèle pour l’étude d’un ensemble de clusters orthologues dans plusieurs espèces. • Proposer un algorithme permettant d’inférer l’histoire évolutive d’un cluster de GRT en tenant compte des duplications en tandem, duplications inversées, inversions et délétions de segments chromosomiques contenant un ou plusieurs gènes adjacents.
Resumo:
Les systèmes Matériels/Logiciels deviennent indispensables dans tous les aspects de la vie quotidienne. La présence croissante de ces systèmes dans les différents produits et services incite à trouver des méthodes pour les développer efficacement. Mais une conception efficace de ces systèmes est limitée par plusieurs facteurs, certains d'entre eux sont: la complexité croissante des applications, une augmentation de la densité d'intégration, la nature hétérogène des produits et services, la diminution de temps d’accès au marché. Une modélisation transactionnelle (TLM) est considérée comme un paradigme prometteur permettant de gérer la complexité de conception et fournissant des moyens d’exploration et de validation d'alternatives de conception à des niveaux d’abstraction élevés. Cette recherche propose une méthodologie d’expression de temps dans TLM basée sur une analyse de contraintes temporelles. Nous proposons d'utiliser une combinaison de deux paradigmes de développement pour accélérer la conception: le TLM d'une part et une méthodologie d’expression de temps entre différentes transactions d’autre part. Cette synergie nous permet de combiner dans un seul environnement des méthodes de simulation performantes et des méthodes analytiques formelles. Nous avons proposé un nouvel algorithme de vérification temporelle basé sur la procédure de linéarisation des contraintes de type min/max et une technique d'optimisation afin d'améliorer l'efficacité de l'algorithme. Nous avons complété la description mathématique de tous les types de contraintes présentées dans la littérature. Nous avons développé des méthodes d'exploration et raffinement de système de communication qui nous a permis d'utiliser les algorithmes de vérification temporelle à différents niveaux TLM. Comme il existe plusieurs définitions du TLM, dans le cadre de notre recherche, nous avons défini une méthodologie de spécification et simulation pour des systèmes Matériel/Logiciel basée sur le paradigme de TLM. Dans cette méthodologie plusieurs concepts de modélisation peuvent être considérés séparément. Basée sur l'utilisation des technologies modernes de génie logiciel telles que XML, XSLT, XSD, la programmation orientée objet et plusieurs autres fournies par l’environnement .Net, la méthodologie proposée présente une approche qui rend possible une réutilisation des modèles intermédiaires afin de faire face à la contrainte de temps d’accès au marché. Elle fournit une approche générale dans la modélisation du système qui sépare les différents aspects de conception tels que des modèles de calculs utilisés pour décrire le système à des niveaux d’abstraction multiples. En conséquence, dans le modèle du système nous pouvons clairement identifier la fonctionnalité du système sans les détails reliés aux plateformes de développement et ceci mènera à améliorer la "portabilité" du modèle d'application.
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop sont des normes industrielle de facto. D'autre part, la méthode de subdivision 4-8 est bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet d'être plus pratique pour atteindre un niveau donné de précision. Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des surfaces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent, de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8. En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches, un peu comme les bornes correspondantes données par Wu-Peters pour la méthode de subdivision Loop.
Resumo:
L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées).
Resumo:
L'hétérogénéité de réponses dans un groupe de patients soumis à un même régime thérapeutique doit être réduite au cours d'un traitement ou d'un essai clinique. Deux approches sont habituellement utilisées pour atteindre cet objectif. L'une vise essentiellement à construire une observance active. Cette approche se veut interactive et fondée sur l'échange ``médecin-patient '', ``pharmacien-patient'' ou ``vétérinaire-éleveurs''. L'autre plutôt passive et basée sur les caractéristiques du médicament, vise à contrôler en amont cette irrégularité. L'objectif principal de cette thèse était de développer de nouvelles stratégies d'évaluation et de contrôle de l'impact de l'irrégularité de la prise du médicament sur l'issue thérapeutique. Plus spécifiquement, le premier volet de cette recherche consistait à proposer des algorithmes mathématiques permettant d'estimer efficacement l'effet des médicaments dans un contexte de variabilité interindividuelle de profils pharmacocinétiques (PK). Cette nouvelle méthode est fondée sur l'utilisation concommitante de données \textit{in vitro} et \textit{in vivo}. Il s'agit de quantifier l'efficience ( c-à-dire efficacité plus fluctuation de concentrations \textit{in vivo}) de chaque profil PK en incorporant dans les modèles actuels d'estimation de l'efficacité \textit{in vivo}, la fonction qui relie la concentration du médicament de façon \textit{in vitro} à l'effet pharmacodynamique. Comparativement aux approches traditionnelles, cette combinaison de fonction capte de manière explicite la fluctuation des concentrations plasmatiques \textit{in vivo} due à la fonction dynamique de prise médicamenteuse. De plus, elle soulève, à travers quelques exemples, des questions sur la pertinence de l'utilisation des indices statiques traditionnels ($C_{max}$, $AUC$, etc.) d'efficacité comme outil de contrôle de l'antibiorésistance. Le deuxième volet de ce travail de doctorat était d'estimer les meilleurs temps d'échantillonnage sanguin dans une thérapie collective initiée chez les porcs. Pour ce faire, nous avons développé un modèle du comportement alimentaire collectif qui a été par la suite couplé à un modèle classique PK. À l'aide de ce modèle combiné, il a été possible de générer un profil PK typique à chaque stratégie alimentaire particulière. Les données ainsi générées, ont été utilisées pour estimer les temps d'échantillonnage appropriés afin de réduire les incertitudes dues à l'irrégularité de la prise médicamenteuse dans l'estimation des paramètres PK et PD . Parmi les algorithmes proposés à cet effet, la méthode des médianes semble donner des temps d'échantillonnage convenables à la fois pour l'employé et pour les animaux. Enfin, le dernier volet du projet de recherche a consisté à proposer une approche rationnelle de caractérisation et de classification des médicaments selon leur capacité à tolérer des oublis sporadiques. Méthodologiquement, nous avons, à travers une analyse globale de sensibilité, quantifié la corrélation entre les paramètres PK/PD d'un médicament et l'effet d'irrégularité de la prise médicamenteuse. Cette approche a consisté à évaluer de façon concomitante l'influence de tous les paramètres PK/PD et à prendre en compte, par la même occasion, les relations complexes pouvant exister entre ces différents paramètres. Cette étude a été réalisée pour les inhibiteurs calciques qui sont des antihypertenseurs agissant selon un modèle indirect d'effet. En prenant en compte les valeurs des corrélations ainsi calculées, nous avons estimé et proposé un indice comparatif propre à chaque médicament. Cet indice est apte à caractériser et à classer les médicaments agissant par un même mécanisme pharmacodynamique en terme d'indulgence à des oublis de prises médicamenteuses. Il a été appliqué à quatre inhibiteurs calciques. Les résultats obtenus étaient en accord avec les données expérimentales, traduisant ainsi la pertinence et la robustesse de cette nouvelle approche. Les stratégies développées dans ce projet de doctorat sont essentiellement fondées sur l'analyse des relations complexes entre l'histoire de la prise médicamenteuse, la pharmacocinétique et la pharmacodynamique. De cette analyse, elles sont capables d'évaluer et de contrôler l'impact de l'irrégularité de la prise médicamenteuse avec une précision acceptable. De façon générale, les algorithmes qui sous-tendent ces démarches constitueront sans aucun doute, des outils efficients dans le suivi et le traitement des patients. En outre, ils contribueront à contrôler les effets néfastes de la non-observance au traitement par la mise au point de médicaments indulgents aux oublis
Resumo:
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.
Resumo:
Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).
Resumo:
La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l'Université de Montréal (http://www.bib.umontreal.ca/MU)
Resumo:
Contexte: Bien que plusieurs algorithmes pharmacogénétiques de prédiction de doses de warfarine aient été publiés, peu d’études ont comparé la validité de ces algorithmes en pratique clinique réelle. Objectif: Évaluer trois algorithmes pharmacogénomiques dans une population de patients qui initient un traitement à la warfarine et qui souffrent de fibrillation auriculaire ou de problèmes de valves cardiaques. Analyser la performance des algorithmes de Gage et al., de Michaud et al. ainsi que de l’IWPC quant à la prédiction de la dose de warfarine permettant d’atteindre l’INR thérapeutique. Méthodes: Un devis de cohorte rétrospectif fut utilisé afin d’évaluer la validité des algorithmes chez 605 patients ayant débuté une thérapie de warfarine à l’Institut de Cardiologie de Montréal. Le coefficient de corrélation de Pearson ainsi que l’erreur absolue moyenne ont été utilisés pour évaluer la précision des algorithmes. L’exactitude clinique des prédictions de doses fut évaluée en calculant le nombre de patients pour qui la dose prédite était sous-estimée, idéalement estimée ou surestimée. Enfin, la régression linéaire multiple a été utilisée pour évaluer la validité d’un modèle de prédiction de doses de warfarine obtenu en ajoutant de nouvelles covariables. Résultats : L’algorithme de Gage a obtenu la proportion de variation expliquée la plus élevée (R2 ajusté = 44 %) ainsi que la plus faible erreur absolue moyenne (MAE = 1.41 ± 0.06). De plus, la comparaison des proportions de patients ayant une dose prédite à moins de 20 % de la dose observée a confirmé que l’algorithme de Gage était également le plus performant. Conclusion : Le modèle publié par Gage en 2008 est l’algorithme pharmacogénétique le plus exact dans notre population pour prédire des doses thérapeutiques de warfarine.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Les seize détecteurs MPX constituant le réseau ATLAS-MPX ont été placés à différentes positions dans le détecteur ATLAS et sa averne au CERN dans le but de mesurer en emps réel les champs de radiation produits ar des particules primaires (protons des faisceaux) et des particules secondaires (kaons, pions, g, protons) issues des collisions proton-proton. Des films de polyéthylène (PE) et de fluorure de lithium (6LiF) recouvrent les détecteurs afin d’augmenter leur sensibilité aux neutrons produits par les particules primaires et secondaires interagissant avec les matériaux présents dans l’environnement d’ATLAS. La reconnaissance des traces laissées par les particules dans un détecteur ATLAS-MPX se fait à partir des algorithmes du logiciel MAFalda (“Medipix Analysis Framework”) basé sur les librairies et le logiciel d’analyse de données ROOT. Une étude sur le taux d’identifications erronées et le chevauchement d’amas a été faite en reconstruisant les activités des sources 106Ru et 137Cs. L’efficacité de détection des neutrons rapides a été mesurée à l’aide des sources 252Cf et 241AmBe (neutrons d’énergie moyenne de 2.13 et 4.08 MeV respectivement). La moyenne des efficacités de détection mesurées pour les neutrons produits par les sources 252C f et 241AmBe a été calculée pour les convertisseurs 6LiF et PE et donnent (0.8580 ± 0.1490)% et (0.0254 ± 0.0031)% pour LiF et (0.0510 ± 0.0061)% et (0.0591 ± 0.0063)% pour PE à bas et à haut seuil d’énergie respectivement. Une simulation du calcul de l’efficacité de détection des neutrons dans le détecteur MPX a été réalisée avec le logiciel GEANT4. Des données MPX correspondant aux collisions proton-proton à 2.4 TeV et à 7 TeV dans le centre de masse ont été analysées. Les flux détectés d’électrons et de photons sont particulièrement élevés dans les détecteurs MPX01 et MPX14 car ils sont plus près du point de collision. Des flux de neutrons ont été estimés en utilisant les efficacités de détection mesurées. Une corrélation avec la luminosité du LHC a été établie et on prédit que pour les collisions à 14 TeV dans le centre de masse et avec une luminosité de 10^34 cm-1*s-1 il y aura environ 5.1x10^8 ± 1.5x10^7 et 1.6x10^9 ± 6.3x10^7 particules détectées par les détecteurs MPX01 et MPX14 respectivement.
Resumo:
Le développement d’un médicament est non seulement complexe mais les retours sur investissment ne sont pas toujours ceux voulus ou anticipés. Plusieurs médicaments échouent encore en Phase III même avec les progrès technologiques réalisés au niveau de plusieurs aspects du développement du médicament. Ceci se traduit en un nombre décroissant de médicaments qui sont commercialisés. Il faut donc améliorer le processus traditionnel de développement des médicaments afin de faciliter la disponibilité de nouveaux produits aux patients qui en ont besoin. Le but de cette recherche était d’explorer et de proposer des changements au processus de développement du médicament en utilisant les principes de la modélisation avancée et des simulations d’essais cliniques. Dans le premier volet de cette recherche, de nouveaux algorithmes disponibles dans le logiciel ADAPT 5® ont été comparés avec d’autres algorithmes déjà disponibles afin de déterminer leurs avantages et leurs faiblesses. Les deux nouveaux algorithmes vérifiés sont l’itératif à deux étapes (ITS) et le maximum de vraisemblance avec maximisation de l’espérance (MLEM). Les résultats de nos recherche ont démontré que MLEM était supérieur à ITS. La méthode MLEM était comparable à l’algorithme d’estimation conditionnelle de premier ordre (FOCE) disponible dans le logiciel NONMEM® avec moins de problèmes de rétrécissement pour les estimés de variances. Donc, ces nouveaux algorithmes ont été utilisés pour la recherche présentée dans cette thèse. Durant le processus de développement d’un médicament, afin que les paramètres pharmacocinétiques calculés de façon noncompartimentale soient adéquats, il faut que la demi-vie terminale soit bien établie. Des études pharmacocinétiques bien conçues et bien analysées sont essentielles durant le développement des médicaments surtout pour les soumissions de produits génériques et supergénériques (une formulation dont l'ingrédient actif est le même que celui du médicament de marque, mais dont le profil de libération du médicament est différent de celui-ci) car elles sont souvent les seules études essentielles nécessaires afin de décider si un produit peut être commercialisé ou non. Donc, le deuxième volet de la recherche visait à évaluer si les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte pour un individu pouvaient avoir une incidence sur les conclusions d’une étude de bioéquivalence et s’ils devaient être soustraits d’analyses statistiques. Les résultats ont démontré que les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte influençaient de façon négative les résultats si ceux-ci étaient maintenus dans l’analyse de variance. Donc, le paramètre de surface sous la courbe à l’infini pour ces sujets devrait être enlevé de l’analyse statistique et des directives à cet effet sont nécessaires a priori. Les études finales de pharmacocinétique nécessaires dans le cadre du développement d’un médicament devraient donc suivre cette recommandation afin que les bonnes décisions soient prises sur un produit. Ces informations ont été utilisées dans le cadre des simulations d’essais cliniques qui ont été réalisées durant la recherche présentée dans cette thèse afin de s’assurer d’obtenir les conclusions les plus probables. Dans le dernier volet de cette thèse, des simulations d’essais cliniques ont amélioré le processus du développement clinique d’un médicament. Les résultats d’une étude clinique pilote pour un supergénérique en voie de développement semblaient très encourageants. Cependant, certaines questions ont été soulevées par rapport aux résultats et il fallait déterminer si le produit test et référence seraient équivalents lors des études finales entreprises à jeun et en mangeant, et ce, après une dose unique et des doses répétées. Des simulations d’essais cliniques ont été entreprises pour résoudre certaines questions soulevées par l’étude pilote et ces simulations suggéraient que la nouvelle formulation ne rencontrerait pas les critères d’équivalence lors des études finales. Ces simulations ont aussi aidé à déterminer quelles modifications à la nouvelle formulation étaient nécessaires afin d’améliorer les chances de rencontrer les critères d’équivalence. Cette recherche a apporté des solutions afin d’améliorer différents aspects du processus du développement d’un médicament. Particulièrement, les simulations d’essais cliniques ont réduit le nombre d’études nécessaires pour le développement du supergénérique, le nombre de sujets exposés inutilement au médicament, et les coûts de développement. Enfin, elles nous ont permis d’établir de nouveaux critères d’exclusion pour des analyses statistiques de bioéquivalence. La recherche présentée dans cette thèse est de suggérer des améliorations au processus du développement d’un médicament en évaluant de nouveaux algorithmes pour des analyses compartimentales, en établissant des critères d’exclusion de paramètres pharmacocinétiques (PK) pour certaines analyses et en démontrant comment les simulations d’essais cliniques sont utiles.
Détection des événements de "Minimum Bias" et neutrons avec les détecteurs ATLAS-MPX par simulations
Resumo:
Un réseau de seize détecteurs ATLAS-MPX a été mis en opération dans le détecteur ATLAS au LHC du CERN. Les détecteurs ATLAS-MPX sont sensibles au champ mixte de radiation de photons et d’électrons dans la caverne d’ATLAS et sont recouverts de convertisseurs de fluorure de lithium et de polyéthylène pour augmenter l’efficacité de détection des neutrons thermiques et des neutrons rapides respectivement. Les collisions à haute énergie sont dominées par des interactions partoniques avec petit moment transverse pT , associés à des événements de “minimum bias”. Dans notre cas la collision proton-proton se produit avec une énergie de 7 TeV dans le centre de masse avec une luminosité de 10³⁴cm⁻²s⁻¹ telle que fixée dans les simulations. On utilise la simulation des événements de "minimum bias" générés par PYTHIA en utilisant le cadre Athena qui fait une simulation GEANT4 complète du détecteur ATLAS pour mesurer le nombre de photons, d’électrons, des muons qui peuvent atteindre les détecteurs ATLASMPX dont les positions de chaque détecteur sont incluses dans les algorithmes d’Athena. Nous mesurons les flux de neutrons thermiques et rapides, générés par GCALOR, dans les régions de fluorure de lithium et de polyéthylène respectivement. Les résultats des événements de “minimum bias” et les flux de neutrons thermiques et rapides obtenus des simulations sont comparés aux mesures réelles des détecteurs ATLAS-MPX.