947 resultados para Algebraic equations
Resumo:
Compliant control is a standard method for performing fine manipulation tasks, like grasping and assembly, but it requires estimation of the state of contact between the robot arm and the objects involved. Here we present a method to learn a model of the movement from measured data. The method requires little or no prior knowledge and the resulting model explicitly estimates the state of contact. The current state of contact is viewed as the hidden state variable of a discrete HMM. The control dependent transition probabilities between states are modeled as parametrized functions of the measurement We show that their parameters can be estimated from measurements concurrently with the estimation of the parameters of the movement in each state of contact. The learning algorithm is a variant of the EM procedure. The E step is computed exactly; solving the M step exactly would require solving a set of coupled nonlinear algebraic equations in the parameters. Instead, gradient ascent is used to produce an increase in likelihood.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
Compensation for the dynamic response of a temperature sensor usually involves the estimation of its input on the basis of the measured output and model parameters. In the case of temperature measurement, the sensor dynamic response is strongly dependent on the measurement environment and fluid velocity. Estimation of time-varying sensor model parameters therefore requires continuous textit{in situ} identification. This can be achieved by employing two sensors with different dynamic properties, and exploiting structural redundancy to deduce the sensor models from the resulting data streams. Most existing approaches to this problem assume first-order sensor dynamics. In practice, however second-order models are more reflective of the dynamics of real temperature sensors, particularly when they are encased in a protective sheath. As such, this paper presents a novel difference equation approach to solving the blind identification problem for sensors with second-order models. The approach is based on estimating an auxiliary ARX model whose parameters are related to the desired sensor model parameters through a set of coupled non-linear algebraic equations. The ARX model can be estimated using conventional system identification techniques and the non-linear equations can be solved analytically to yield estimates of the sensor models. Simulation results are presented to demonstrate the efficiency of the proposed approach under various input and parameter conditions.
Resumo:
Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.
Resumo:
A new approach to determine the local boundary of voltage stability region in a cut-set power space (CVSR) is presented. Power flow tracing is first used to determine the generator-load pair most sensitive to each branch in the interface. The generator-load pairs are then used to realize accurate small disturbances by controlling the branch power flow in increasing and decreasing directions to obtain new equilibrium points around the initial equilibrium point. And, continuous power flow is used starting from such new points to get the corresponding critical points around the initial critical point on the CVSR boundary. Then a hyperplane cross the initial critical point can be calculated by solving a set of linear algebraic equations. Finally, the presented method is validated by some systems, including New England 39-bus system, IEEE 118-bus system, and EPRI-1000 bus system. It can be revealed that the method is computationally more efficient and has less approximation error. It provides a useful approach for power system online voltage stability monitoring and assessment. This work is supported by National Natural Science Foundation of China (No. 50707019), Special Fund of the National Basic Research Program of China (No. 2009CB219701), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200439), Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000), National Major Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan Period (No. 2006BAJ03A06). ©2009 State Grid Electric Power Research Institute Press.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing. In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
This paper describes a method for dynamic data reconciliation of nonlinear systems that are simulated using the sequential modular approach, and where individual modules are represented by a class of differential algebraic equations. The estimation technique consists of a bank of extended Kalman filters that are integrated with the modules. The paper reports a study based on experimental data obtained from a pilot scale mixing process.
Resumo:
[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.
Resumo:
Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.