893 resultados para Albino-rats
Resumo:
Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST), and hydrogen peroxide (H(2)O(2)) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia-induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral-ischemic injury in rat by attenuating oxidative stress.
Resumo:
This study reports the in vivo stimulatory effects of Cramoll 1,4 on rat spleen lymphocytes as evidenced by an increase in intracellular reactive oxygen species (ROS) production, Ca(2+) levels, and interleukin (IL)-1 beta expression. Cramoll 1,4 extracted from seeds of the Leguminosae Cratylia mollis Mart., is a lectin with antitumor and lymphocyte mitogenic activities. Animals (Nine-week-old male albino Wistar rats, Rattus norvegicus) were treated with intraperitoneal injection of Cramoll 1,4 (235 mu g ml(-1) single dose) and, 7 days later, spleen lymphocytes were isolated and analyzed for intracellular ROS, cytosolic Ca(2+), and IL-6, IL-10, and IL-1 mRNAs. Cell viability was investigated by annexin V-FITC and 7-amino-actinomycin D staining. The data showed that in lymphocytes activated by Cramoll 1,4 the increase in cytosolic and mitochondrial ROS was related to higher cytosolic Ca(2+) levels. Apoptosis and necrosis were not detected in statistically significant values and thus the lectin effector activities did not induce lymphocyte death. In vivo Cramoll 1,4 treatment led to a significant increase in IL-1 beta but IL-6 and -10 levels did not change. Cramoll 1,4 had modulator activities on spleen lymphocytes and stimulated the Th2 response.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent decades, metabolic syndrome has become a public health problem throughout the world. Longitudinal studies in humans have several limitations due to the invasive nature of certain analyses and the size and randomness of the study populations. Thus, animal models that are able to mimic human physiological responses could aid in investigating metabolic disease. Thus, the present study was designed to analyze metabolic syndrome markers in albino Wistar rats (Rattus norvegicus) of different ages. The following parameters were assessed at two (young), four (adult), six (adult), and twelve (mature) months of age: glucose tolerance (glucose tolerance test); insulin sensitivity (insulin tolerance test); fasting serum glucose, triglycerides, total cholesterol, HDL cholestero, and LDL cholesterol concentrations; glucose uptake in isolated soleus muscle; and total lipid concentration in subcutaneous, mesenteric, and retroperitoneal adipose tissue. We found that aging triggered signs of metabolic syndrome in Wistar rats. For example, mature rats showed a significant increase in body weight that was associated. In addition, mature rats showed an increase in the serum concentration of triglycerides, total cholesterol, and LDL cholesterol, which is characteristic of dyslipidemia. There was also an increase in serum glucose compared with the younger groups of animals. Therefore, aging Wistar rats appear to be an interesting model to study the changes related to metabolic syndrome.
Resumo:
Increased fighting is an effect of desynchronized sleep deprivation (DSD) in rats, and recently this behavior has been suggested to be spontaneous panic and equivalent to panic disorder. In the present study we tested this hypothesis by evaluating the effect of sodium lactate on this aggressiveness, because this substance is recognized to induce spontaneous panic attacks in patients. A total of 186 male albino Wistar rats, 250-350 g, 90-120 days of age, were submitted to DSD (multiple platform method) for 0, 4, or 5 days. At the end of the deprivation period the rats were divided into subgroups respectively injected intraperitoneally with 1.86, 2.98 and 3.72 g/kg of 1 M sodium lactate, or 1.86 and 3.72 g/kg of 2 M sodium lactate. The control animals were submitted to the same procedures but received equivalent injections of sodium chloride. Regardless of DSD time, sleep-deprived animals that received sodium lactate presented a significantly higher mean number of fights (0.13 ± 0.02 fights/min) and a longer mean time spent in confrontation (2.43 ± 0.66 s/min) than the controls (0.01 ± 0.006 fights/min and 0.12 ± 0.07 s/min, respectively; P<0.01, Student t-test). For the sodium lactate group, concentration of the solution and time of deprivation increased the number of fights, with the mean number of fights and mean duration of fighting episodes being greater with the 2.98 g/kg dose using 1 M lactate concentration. These results support the hypothesis that fighting induced by DSD is probably a spontaneous panic manifestation. However, additional investigations are necessary in order to accept this as a promising animal model for studies on panic disorder.
Resumo:
The effects of chronic alcohol ingestion on the secretory epithelium of the seminal vesicle were studied in rats (Rattus norvegicus). Male adult albino Wistar rats were divided into two groups: alcoholic and control. Tips of the seminal vesicle were removed and prepared for light and electron microscopy. Ultrastructural observations on the epithelial cells of the seminal vesicle showed reduced epithelial cell size, decreased apical secretory vacuoles, irregularly shaped nuclei with deep infoldings, increased lipid droplets and dense bodies, a small number of microvilli covering the cell surface, and signs of degeneration. In addition to the hormonal effects, alcohol may act on the secretory epithelium of the seminal vesicle.
Resumo:
The objective of the present research was to investigate the ultrastructural peculiarities of the aortic wall of the rat. Seven young adult rats were used, from which fragments of the infrarenal abdominal aorta were collected. After collection, the vascular segments were fixed and sent for analysis by scanning electron microscope. The elastic lamellae appear interposed with smooth muscular fibers; this pattern was verified mainly at the medial layer structure. Among the mural elements a well defined interrelationship was established through connective lamellae of the arterial wall. The collagen lamellae mainly provided anchoring among the elastic and smooth muscular constituents. The intimal layer showed special ultrastructural features, such as a non-continuous inner elastic lamina presented in certain sites of the vascular wall, followed by endothelial pores. This mural pattern of the abdominal aorta provided support to vascular functions such as shrinkage among the laminar composition of the arterial layers, also acting in mechanical properties of the vascular wall, such as viscoelasticity and contractility - essential actions to blood vessel hemodynamics.
Resumo:
Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.
Resumo:
The aim of this study was to evaluate the radioprotector effect of sodium selenite on the ultrastructure of submandibular glands in rats. Fifty-seven male albino Wistar rats were randomized to 4 groups: control, irradiated, sodium selenite and irradiated/sodium selenite. The animals in the sodium selenite and irradiated/sodium selenite groups received intraperitoneal injections of sodium selenite (0.5 mg/kg body weight) 24 h before irradiation. The animals belonging to the irradiated and irradiated/sodium selenite groups were submitted to 15 Gy of gamma radiation in the head and neck region. The submandibular glands were removed at 4, 8, 12, 24, 48 and 72 h after irradiation. The ionizing radiation induced damage to the secretory cells, especially the serous cells, right from the first period. Vacuolization, lysis of cytoplasmic inclusions and nuclear alterations occurred. The sodium selenite group also presented cellular alterations in the study periods, but with less damage compared to that caused by radiation. There was greater similarity between the irradiated/sodium selenite group and the control group than with the other groups treated in all study periods. Despite the alterations observed in the sodium selenite group, sodium selenite presented a radioprotective action on the secretory cells of submandibular glands.
Resumo:
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective alpha 1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective alpha 2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that alpha 1 and alpha 2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that alpha 1-adrenoceptors and alpha 2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
"Literature cited": p. 120-121.
Resumo:
Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P\0.001). The number of TRAP? osteoclasts in bone resorption pits, VEGF? cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P\0.05), while no significant difference was detected in the number of ALP? cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.
Resumo:
Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background
Resumo:
A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The ‘exemplar’ design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.