985 resultados para Alaska Railroad.
Resumo:
Beluga, Delphinapterus leucas, distribution in the Gulf of Alaska and adjacent inside waters was examined through a review of surveys conducted as far back as 1936. Although beluga sightings have occurred on almost every marine mammal survey in northern Cook Inlet (over 20 surveys reported here), beluga sightings have been rare outside the inlet in the Gulf of Alaska. More than 150,000 km of dedicated survey effort in the Gulf of Alaska resulted in sightings of over 23,000 individual cetaceans, of which only 4 beluga sightings (5 individuals) occurred. In addition, nearly 100,000 individual cetaceans were reported in the Platforms of Opportunity database; yet, of these, only 5 sightings (39 individuals) were belugas. Furthermore, approximately 19 beluga sightings (>260 individuals), possibly including resightings, have been reported without information on effort or other cetacean sightings. Of the 28 sightings of belugas outside of Cook Inlet, 9 were near Kodiak Island, 10 were in or near Prince William Sound, 8 were in Yakutat Bay, and 1 anomalous sighting was well south of the Gulf. These sightings support archaeological and commercial harvest evidence indicating the only persistent group of belugas in the Gulf of Alaska occurs in Cook Inlet.
Resumo:
Annual abundance estimates of belugas, Delphinapterus leucas, in Cook Inlet were calculated from counts made by aerial observers and aerial video recordings. Whale group-size estimates were corrected for subsurface whales (availability bias) and whales that were at the surface but were missed (detection bias). Logistic regression was used to estimate the probability that entire groups were missed during the systematic surveys, and the results were used to calculate a correction to account for the whales in these missed groups (1.015, CV = 0.03 in 1994–98; 1.021, CV = 0.01 in 1999– 2000). Calculated abundances were 653 (CV = 0.43) in 1994, 491 (CV = 0.44) in 1995, 594 (CV = 0.28) in 1996, 440 (CV = 0.14) in 1997, 347 (CV = 0.29) in 1998, 367 (CV = 0.14) in 1999, and 435 (CV = 0.23, 95% CI=279–679) in 2000. For management purposes the current Nbest = 435 and Nmin = 360. These estimates replace preliminary estimates of 749 for 1994 and 357 for 1999. Monte Carlo simulations indicate a 47% probability that from June 1994 to June 1998 abundance of the Cook Inlet stock of belugas was depleted by 50%. The decline appears to have stopped in 1998.
Resumo:
Belugas, Delphinapterus leucas, groups were videotaped concurrent to observer counts during annual NMFS aerial surveys of Cook Inlet, Alaska, from 1994 to 2000. The videotapes provided permanent records of whale groups that could be examined and compared to group size estimates ade by aerial observers.Examination of the video recordings resulted in 275 counts of 79 whale groups. The McLaren formula was used to account for whales missed while they were underwater (average correction factor 2.03; SD=0.64). A correction for whales missed due to video resolution was developed by using a second, paired video camera that magnified images relative to the standard video. This analysis showed that some whales were missed either because their image size fell below the resolution of hte standard video recording or because two whales surfaced so close to each other that their images appeared to be one large whale. The correction method that resulted depended on knowing the average whale image size in the videotapes. Image sizes were measured for 2,775 whales from 275 different passes over whale groups. Corrected group sizes were calcualted as the product of the original count from video, the correction factor for whales missed underwater, and the correction factor for whales missed due to video resolution (averaged 1.17; SD=0.06). A regression formula was developed to estimate group sizes from aerial observer counts; independent variables were the aerial counts and an interaction term relative to encounter rate (whales per second during the counting of a group), which were regressed against the respective group sizes as calculated from the videotapes. Significant effects of encounter rate, either positive or negative, were found for several observers. This formula was used to estimate group size when video was not available. The estimated group sizes were used in the annual abundance estimates.
Resumo:
A review of available information describing habitat associations for belugas, Delphinapterus leucas, in Cook Inlet was undertaken to complement population assessment surveys from 1993-2000. Available data for physical, biological, and anthropogenic factors in Cook Inlet are summarized followed by a provisional description of seasonal habitat associations. To summarize habitat preferences, the beluga summer distribution pattern was used to partition Cook Inlet into three regions. In general, belugas congregate in shallow, relatively warm, low-salinity water near major river outflows in upper Cook Inlet during summer (defined as their primary habitat), where prey availability is comparatively high and predator occurrence relatively low. In winter, belugas are seen in the central inlet, but sightings are fewer in number, and whales more dispersed compared to summer. Belugas are associated with a range of ice conditions in winter, from ice-free to 60% ice-covered water. Natural catastrophic events, such as fires, earthquakes, and volcanic eruptions, have had no reported effect on beluga habitat, although such events likely affect water quality and, potentially, prey availability. Similarly, although sewage effluent and discharges from industrial and military activities along Cook Inlet negatively affect water quality, analyses of organochlorines and heavy metal burdens indicate that Cook Inlet belugas are not assimilating contaminant loads greater than any other Alaska beluga stocks. Offshore oil and gas activities and vessel traffic are high in the central inlet compared with other Alaska waters, although belugas in Cook Inlet seem habituated to these anthropogenic factors. Anthropogenic factors that have the highest potential negative impacts on belugas include subsistence hunts (not discussed in this report), noise from transportation and offshore oil and gas extraction (ship transits and aircraft overflights), and water quality degradation (from urban runoff and sewage treatment facilities). Although significant impacts from anthropogenic factors other than hunting are not yet apparent, assessment of potential impacts from human activities, especially those that may effect prey availability, are needed.
Resumo:
Suction-cup-attached VHF radio transmittes were deployed on belugas, Delphinapterus leucas, in Cook Inlet, Alaska, in 1994 and 1995 to characterize the whales' surfacing behavior. Data from video recordings were also used to characterize behavior of undisturbed whales and whales actively pursued for tagging. Statistics for dive intervals (time between the midpoints of contiguous surfacings) and surfacing intevals (time at the surface per surfacing) were estimated. Operations took place on the tidal delta of the Susitna and Little Susitna Rivers. During the 2-yr study, eight whales were successfully tagged, five tags remained attached for >60 min, and data from these were used in the analyses. Mean dive interval was 24.1 sec (interwhale SD=6.4 sec, n=5). The mean surfacing interval, as determined from the duration of signals received from the radio transmitters, was 1.8 sec (SD=0.3 sec, n=125) for one of the whales. Videotaped behaviors were categorized as "head-lifts" or "slow-rolls." Belugas were more likely to head-lift than to slow-roll during vessel approaches and tagging attempts when compared to undisturbed whales. In undisturbed groups, surfacing intervals determined from video records were significantly different between head-lifting (average = 1.02 sect, SD=0.38 sed, n=28) and slow-rolling whales (average = 2.45 sec, SD=0.37 sec, n=106). Undisturbed juveniles exhibited shorter slow-roll surfacing intervals (average = 2.25 sec, SD=0.32 sec, n=36) than adults (average = 2.55 sec, SD=0.36 sec, n=70). We did not observe strong reactions by the belugas to the suction-cup tags. This tagging method shows promise for obtaining surfacing data for durations of several days.
Resumo:
Attempts to capture and place satellite tags on belugas, Delphinapterus leucas, in Cook Inlet, Alaska were conducted during late spring and summer of 1995, 1997, and 1999. In 1995, capture attempts using a hoop net proved impractical in Cook Inlet. In 1997, capture efforts focused on driving belugas into nets. Although this method had been successful in the Canadian High Arctic, it failed in Cook Inlet due to the ability of the whales to detect and avoid nets in shallow and very turbid water. In 1999, belugas were successfully captured using a gillnet encirclement technique. A satellite tag was attached to a juvenile male, which subsequently provided the first documentation of this species’ movements within Cook Inlet during the summer months (31 May–17 September).
Resumo:
Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, represent a unique and isolated marine mammal population that has been hunted for a variety of purposes since prehistoric times. Archeological studies have shown that both Alutiiq Eskimos and Dena'ina Atabaskan Indians have long utilized many marine resources in Cook Inlet, including belugas. Over the past century, commercial whaling and sport hunting also occurred periodically in Cook Inlet prior to the Marine Mammal Protection Act of 1972 (MMPA). During the 1990's, the hunting mortality by Alaska Natives apparently increased to 40-70 whales per year, which led to the decling of this stock and its subsequent designation in 2000 as depleted under the MMPA. Concerns about the decline of the Cook Inlet stock resulted in a voluntary suspension of the subsistenc hunt by Alaska Natives in 1999. The difficulty in obtaining accurate estimates for the harvest of these whales is due to the inability to identify all of the hunters and, in turn, the size of the harvest. Attempts to reconstruct harvest records based on hunters' recollections and interviews from only a few households have been subject to a wide degree of speculation. To adequately monitor the beluga harvest, the National Marine Fisheries Service established marking and reporting regulations in October 1999. These rules require that Alaska Natives who hunt belugas in Cook Inlet must collect the lowere left jaw from harvested whales and complete a report that includes date and time of the harvest, coloration of the whale, harvest location, and method of harvest. The MMPA was amended in 2000 to require a cooperative agreement between the National Marine Fisheries Service and Alaska Native organizations before hunting could be resumed.
Resumo:
The population of belugas, Delphinapterus leucas, in Cook Inlet, Alaska, is geographically isolated and appears to be declining. Conservation efforts require appropriate information about population levels and trends, feeding and behavior, reproduction, and natural and anthropogenic impacts. This study documents traditional ecological knowledge of the Alaska Native hunters of belugas in Cook Inlet to add information from this critical source. Traditional knowledge about belugas has been documented elsewhere by the author, and the same methods were used in Cook Inlet to systematically gather information concerning knowledge of the natural history of this beluga population and its habitat. The hunters’knowledge is largely consistent with what is known from previous research, and it extends the published descriptions of the ecology of beluga whales in Cook Inlet. Making this information available and involving the hunters to a greater extent in research and management are important contributions to the conservation of Cook Inlet beluga
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
The worldwide literature on management of spotted seals, Phoca largha, was reviewed and updated, and aerial surveys weref lown in 1992 and 1993 to determine the species' distribution and abundance in U.S. waters. In April, spotted seals were found only in the Bering Sea ice front. In June, they were seen along deteriorating ice floes and fast ice in Norton Sound. Surveys along most of Alaska's western coast in August and September found over 2,500 spotted seals in Kuskokwim Bay and concentrations of 100-400 seals around Nunivak Island, Scammon Bay, Golovnin Bay/Norton Sound, Cape Espenberg/Kotzebue Sound, and Kasegaluk Lagoon. All of these sites have been used by spotted seals in the past. The sum of the highest counts, irrespective of year, was 3,570 seals (CV =0.06). This is not an abundance estimate for all spotted seals in the Bering Sea, because it does not account for animals in the water, and we did not survey the Asian coast and some islands. Also, spotted seals and harbor seals, Phoca vitulina, are too similar in appearance to be identified accurately from the air, so our results probably include a mix of these species where their ranges overlap.
Resumo:
In April 1990, the Steller sea lion, Eumetopias jubatus, was listed as threatened under the U.S. Endangered Species Act by emergency action. Competitive interactions with the billion-dollar Alaska commercial groundfish fisheries have been suggested as one of the possible contributing factors to the Steller sea lion population decline. Since the listing, fisheries managers have attempted to address the potential impacts of the groundfish fisheries on Steller sea lion recovery. In this paper, we review pertinent Federal legislation, biological information on the Steller sea lion decline, changes in the Alaska trawl fishery for walleye pollock, Theragra chalcogramma, since the late 1970's, andpossible interactions between fisheries and sea lions. Using three cases, we illustrate how the listing of Steller sea lions has affected Alaska groundfish fisheries through: I) actions taken at the time of listing designed to limit the potential for directhuman-related sea lion mortality, 2) actions addressing spatial and temporal separation of fisheries from sea lions, and 3) introduction of risk-adverse stock assessment methodologies and Steller sea lion conservation considerations directly in the annual quota-setting process. This discussion shows some of the ways that North Pacific groundfish resource managers have begun to explicitly consider the conservation ofmarine mammal and other nontarget species.
Resumo:
A research submersible was used to delineate the depth distribution of lingcod, Ophiodon elongatus, nests (egg masses) below 30 m. Although nests were not seen deeper than 97 m, behavior and dark coloration distinctive of nest-guarding lingcod were seen as deep as 126 m. Males guarding nests were distinctly colored, i.e., dark with little or no mottling, and most were obviously scarred. Two types of guarding behaviors were observed: 1) Males lying directly on or beside the nest and remaining nearly motionless unless touched and 2) males lying on a sentry post and defending the nest when other fish swam close.
Resumo:
Rockfishes (Sebastes spp.) tend to aggregate near rocky, cobble, or generally rugged areas that are difficult to survey with bottom trawls, and evidence indicates that assemblages of rockfish species may differ between areas accessible to trawling and those areas that are not. Consequently, it is important to determine grounds that are trawlable or untrawlable so that the areas where trawl survey results should be applied are accurately identified. To this end, we used multibeam echosounder data to generate metrics that describe the seafloor: backscatter strength at normal and oblique incidence angles, the variation of the angle-dependent backscatter strength within 10° of normal incidence, the scintillation of the acoustic intensity scattered from the seafloor, and the seafloor rugosity. We used these metrics to develop a binary classification scheme to estimate where the seafloor is expected to be trawlable. The multibeam echosounder data were verified through analyses of video and still images collected with a stereo drop camera and a remotely operated vehicle in a study at Snakehead Bank, ~100 km south of Kodiak Island in the Gulf of Alaska. Comparisons of different combinations of metrics derived from the multibeam data indicated that the oblique-incidence backscatter strength was the most accurate estimator of trawlability at Snakehead Bank and that the addition of other metrics provided only marginal improvements. If successful on a wider scale in the Gulf of Alaska, this acoustic remote-sensing technique, or a similar one, could help improve the accuracy of rockfish stock assessments.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.