988 resultados para Air-traffic-controller


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air traffic controller shortages remain a significant challenge in European ATM. Comparing different rules, we quantify the cost effectiveness of adding controller hours to Area Control Centre regulations to avert the delay cost impact on airlines. Typically, adding controller hours results in a net benefit. Distributions of delay duration and aircraft weight play an important role in determining the total cost of a regulation. Errors are likely to be incurred when analysing performance based on average delay values, particularly at the disaggregate level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The symbol in air traffic control (ATC), essentially unchanged since the beginning of commercial air traffic early last century, is the characteristic control tower with its large, tilted windows, situated at an exposed location, and rising high above the airport. “Remote Tower” is changing the provision of Air Traffic Services (ATS) in a way that it is more service tailored, dynamically located and available when and where needed, enabled by digital solutions replacing the physical presence of controllers and control towers at aerodromes with a remotely provided Air Traffic Service for Multiple Aerodromes. The paper examines this phenomenon that will mark an epochal change, analysing the experiments and validations carried out in the last years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivo: Establecer la relación de los factores laborales e individuales con la carga mental en los trabajadores del área de contratación y titulación minera y los de seguimiento y control en una institución minera durante el año 2014. Materiales y métodos: Estudio de corte transversal en 298 trabajadores que trabajan en una Institución Minera, en la ciudad de Bogotá. La identificación de los factores laborales e individuales relacionados con la carga mental se hizo mediante la aplicación de un cuestionario autodiligenciado utilizando la guía de Estimación de la carga mental de trabajo: método NASA TLX, en el cual se realizó análisis de medidas de tendencia central y se indagó relación a través de la prueba Chi cuadrado de Pearson, usando nivel de significación del 5%, con el programa SPSS 20. Resultados: La población predominante era de género masculino, donde la mayoría de los trabajadores fueron ingenieros pertenecientes al área de seguimiento y control, se evidenció asociación estadísticamente significativa entre la profesión con la percepción de exigencia física (p ≤ 0,001), de igual modo entre área de trabajo con la percepción de exigencia mental (p ≤ 0,001), en la cual se establece que la carga mental y el factor profesional (técnicos) y el factor laboral (área de seguimiento y control), son determinantes para la aparición de fatiga fisiológica y cognitiva, ya que en estos se evidencia mayor exigencia física en los trabajadores técnicos con un 81,40% y en los trabajadores del área de seguimiento y control con un 99,04%. Conclusión: Se encontró una alta exigencia mental, temporal y esfuerzo en los trabajadores y una relación significativa entre la profesión con la percepción de exigencia física, predominando en los técnicos, seguidos de abogados e ingenieros y entre el área de trabajo con la percepción de exigencia mental, siendo mayor en el área de seguimiento y control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 3 experiments, the authors examined the role of memory for prior instances for making relative judgments in conflict detection. Participants saw pairs of aircraft either repeatedly conflict with each other or pass safely before being tested on new aircraft pairs, which varied in similarity to the training pairs. Performance was influenced by the similarity between aircraft pairs. Detection time was faster when a conflict pair resembled a pair that had repeatedly conflicted. Detection time was slower, and participants missed conflicts, when a conflict pair resembled a pair that had repeatedly passed safely. The findings identify aircraft features that are used as inputs into the memory decision process and provide an indication of the processes involved in the use of memory for prior instances to make relative judgments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of new technologies, Air Traffic Control, in the nearby of the airport, switched from a purely visual control to the use of radar, sensors and so on. As the industry is switching to the so-called Industry 4.0, also in this frame, it would be possible to implement some of the new tools that can facilitate the work of Air Traffic Controllers. The European Union proposed an innovative project to help the digitalization of the European Sky by means of the Single European Sky ATM Research (SESAR) program, which is the foundation on which the Single European Sky (SES) is based, in order to improve the already existing technologies to transform Air Traffic Management in Europe. Within this frame, the Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision (RETINA) project, which saw the light in 2016, studied the possibility to apply new tools within the conventional control tower to reduce the air traffic controller workload, thanks to the improvements in the augmented reality technologies. After the validation of RETINA, the Digital Technologies for Tower (DTT) project was established and the solution proposed by the University of Bologna aimed, among other things, to introduce Safety Nets in a Head-Up visualization. The aim of this thesis is to analyze the Safety Nets in use within the control tower and, by developing a working concept, implement them in a Head-Up view to be tested by Air Traffic Control Operators (ATCOs). The results, coming from the technical test, show that this concept is working and it could be leading to a future implementation in a real environment, as it improves the air traffic controller working conditions also when low visibility conditions apply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of âeurooecohesionâeuro, which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyses the structure of air traffic and its distribution among the different countries in the European Union, as well as traffic with an origin or destination in non-EU countries. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The segmentation of air traffic in terms of distance permits an assessment of air transport competition with surface transport modes. The results show a clear concentration of traffic in the five larger countries (France, Germany, Italy, Spain and UK), in terms of RPKs. In terms of distance the segment between 500 and 1000 km in the EU, has more flights, passengers, RTKs and CO2 emissions than larger distances. On the environmental side, the distribution of CO2 emissions within the EU Member States is presented, together with fuel efficiency parameters. In general, a direct relationship between RPKs and CO2 emissions is observed for all countries and all distance bands. Consideration is given to the uptake of alternative fuels. Segmenting CO2 emissions per distance band and aircraft type reveals which flights contribute the most the overall EU CO2 emissions. Finally, projections for future CO2 emissions are estimated, according to three different air traffic growth and biofuel introduction scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepared by Raytheon Company, Equipment Division, Air Traffic Control Directorate, under contract DOT-FA 76WA-3738.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Nature of air transport 1. Air transport is important • It is a big industry • It is vital to many industries and regions 2. It is multi-facited • Airlines • Airports • Air traffic control • Domestic and international 3. It is a network Industry • Portugal is part of Europe (legal fact) • Portugal is part of the world (globalization) 4. It is not wanted for its own sake • It “facilitates” and does not create 5. It has environmental implications • Noise • Greenhouse gas emissions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).