978 resultados para Aids dementia complex
Resumo:
Background: Complex chronic diseases are a challenge for the current configuration of Health services. Case management is a service frequently provided for people with chronic conditions and despite its effectiveness in many outcomes, such as mortality or readmissions, uncertainty remains about the most effective form of team organization, structures, and the nature of the interventions. Many processes and outcomes of case management for people with complex chronic conditions cannot be addressed with the information provided by electronic clinical records. Registries are frequently used to deal with this weakness. The aim of this study was to generate a registry-based information system of patients receiving case management to identify their clinical characteristics, their context of care, events identified during their follow-up, interventions developed by case managers, and services used. Methods and design: The study was divided into three phases, covering the detection of information needs, the design and its implementation in the healthcare system, using literature review and expert consensus methods to select variables that would be included in the registry. Objective: To describe the essential characteristics of the provision of ca re lo people who receive case management (structure, process and outcomes), with special emphasis on those with complex chronic diseases. Study population: Patients from any District of Primary Care, who initiate the utilization of case management services, to avoid information bias that may occur when including subjects who have already been received the service, and whose outcomes and characteristics could not be properly collected. Results: A total of 102 variables representing structure, processes and outcomes of case management were selected for their inclusion in the registry after the consensus phase. Total sample was composed of 427 patients, of which 211 (49.4%) were women and 216 (50.6%) were men. The average functional level (Barthel lndex) was 36.18 (SD 29.02), cognitive function (Pfeiffer) showed an average of 4.37 {SD 6.57), Chat1son Comorbidity lndex, obtained a mean of 3.03 (SD 2.7) and Social Support (Duke lndex) was 34.2 % (SD 17.57). More than half of patients include in the Registry, correspond lo immobilized or transitional care for patients discharged from hospital (66.5 %). The patient's educational level was low or very low (50.4%). Caregivers overstrain (Caregiver stress index), obtained an average value of 6.09% (SD 3.53). Only 1.2 % of patients had declared their advanced directives, 58.6 had not defined the tutelage and the vast majority lived at home 98.8 %. Regarding the major events recorded at RANGE Registry, 25.8 % of the selected patients died in the first three months, 8.2 % suffered a hospital admission at least once time, 2.3%, two times, and 1.2% three times, 7.5% suffered a fall, 8.7% had pressure ulcer, 4.7% had problems with medication, and 3.3 % were institutionalized. Stroke is the more prevalent health problem recorded (25.1%), followed by hypertension (11.1%) and COPD (11.1%). Patients registered by NCMs had as main processes diabetes (16.8%) and dementia (11.3 %). The most frequent nursing diagnoses referred to the self-care deficit in various activities of daily living. Regarding to nursing interventions, described by the Nursing Intervention Classification (NIC), dementia management is the most used intervention, followed by mutual goal setting, caregiver and emotional support. Conclusions: The patient profile who receive case management services is a chronic complex patient with severe dependence, cognitive impairment, normal social support, low educational level, health problems such as stroke, hypertension or COPD, diabetes or dementia, and has an informal caregiver. At the first follow up, mortality was 19.2%, and a discrete rate of readmissions and falls.
Resumo:
The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.
Complex Impedance Measurement During RF Catheter Ablation: A More Accurate Measure of Power Delivery
Resumo:
Health Information Systems (HIS) make extensive use of Information and Communication Technologies (ICT). The use of ICT aids in improving the quality and efficiency of healthcare services by making healthcare information available at the point of care (Goldstein, Groen, Ponkshe, and Wine, 2007). The increasing availability of healthcare data presents security and privacy issues which have not yet been fully addressed (Liu, Caelli, May, and Croll, 2008a). Healthcare organisations have to comply with the security and privacy requirements stated in laws, regulations and ethical standards, while managing healthcare information. Protecting the security and privacy of healthcare information is a very complex task (Liu, May, Caelli and Croll, 2008b). In order to simplify the complexity of providing security and privacy in HIS, appropriate information security services and mechanisms have to be implemented. Solutions at the application layer have already been implemented in HIS such as those existing in healthcare web services (Weaver et al., 2003). In addition, Discretionary Access Control (DAC) is the most commonly implemented access control model to restrict access to resources at the OS layer (Liu, Caelli, May, Croll and Henricksen, 2007a). Nevertheless, the combination of application security mechanisms and DAC at the OS layer has been stated to be insufficient in satisfying security requirements in computer systems (Loscocco et al., 1998). This thesis investigates the feasibility of implementing Security Enhanced Linux (SELinux) to enforce a Role-Based Access Control (RBAC) policy to help protect resources at the Operating System (OS) layer. SELinux provides Mandatory Access Control (MAC) mechanisms at the OS layer. These mechanisms can contain the damage from compromised applications and restrict access to resources according to the security policy implemented. The main contribution of this research is to provide a modern framework to implement and manage SELinux in HIS. The proposed framework introduces SELinux Profiles to restrict access permissions over the system resources to authorised users. The feasibility of using SELinux profiles in HIS was demonstrated through the creation of a prototype, which was submitted to various attack scenarios. The prototype was also subjected to testing during emergency scenarios, where changes to the security policies had to be made on the spot. Attack scenarios were based on vulnerabilities common at the application layer. SELinux demonstrated that it could effectively contain attacks at the application layer and provide adequate flexibility during emergency situations. However, even with the use of current tools, the development of SELinux policies can be very complex. Further research has to be made in order to simplify the management of SELinux policies and access permissions. In addition, SELinux related technologies, such as the Policy Management Server by Tresys Technologies, need to be researched in order to provide solutions at different layers of protection.
Resumo:
The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.
Resumo:
Engineering assets such as roads, rail, bridges and other forms of public works are vital to the effective functioning of societies {Herder, 2006 #128}. Proficient provision of this physical infrastructure is therefore one of the key activities of government {Lædre, 2006 #123}. In order to ensure engineering assets are procured and maintained on behalf of citizens, government needs to devise the appropriate policy and institutional architecture for this purpose. The changing institutional arrangements around the procurement of engineering assets are the focus of this paper. The paper describes and analyses the transition to new, more collaborative forms of procurement arrangements which are becoming increasingly prevalent in Australia and other OECD countries. Such fundamental shifts from competitive to more collaborative approaches to project governance can be viewed as a major transition in procurement system arrangements. In many ways such changes mirror the shift from New Public Management, with its emphasis on the use of market mechanisms to achieve efficiencies {Hood, 1991 #166}, towards more collaborative approaches to service delivery, such as those under network governance arrangements {Keast, 2007 #925}. However, just as traditional forms of procurement in a market context resulted in unexpected outcomes for industry, such as a fragmented industry afflicted by chronic litigation {Dubois, 2002 #9}, the change to more collaborative forms of procurement is unlikely to be a panacea to the problems of procurement, and may well also have unintended consequences. This paper argues that perspectives from complex adaptive systems (CAS) theory can contribute to the theory and practice of managing system transitions. In particular the concept of emergence provides a key theoretical construct to understand the aggregate effect that individual project governance arrangements can have upon the structure of specific industries, which in turn impact individual projects. Emergence is understood here as the macro structure that emerges out of the interaction of agents in the system {Holland, 1998 #100; Tang, 2006 #51}.
Resumo:
This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.