989 resultados para Agricultural populations
Resumo:
Populations of the planthopper vector Perkinsiella saccharicida on sugarcane cultivars resistant (cvs Q110 and Q87), moderately resistant (cvs Q90 and Q124) and susceptible (evs NCo310 and Q 102) to Fiji disease with known field resistance scores were monitored on the plant (2000-2001) and ratoon (2001-2002) crops. In both crops, the vector population remained very low, reaching its peak in the autumn. The vector population was significantly higher on cultivars susceptible to Fiji disease than on cultivars moderately resistant and resistant to Fiji disease. The number of R saccharicida adults, nymphs and oviposition sites per plant increased with the increase in the Fiji disease susceptibility. The results suggest that under low vector density, cultivar preference by the planthopper vector mediates Fiji disease resistance in sugarcane. To obtain resistance ratings in the glasshouse that reflect field resistance, glasshouse-screening trials should be conducted under both low and high vector densities, and the cultivar preference of the planthopper vector recorded along with Fiji disease incidence.
Resumo:
For purposes of interstate and international fruit trade, it is necessary to demonstrate that in areas in which fruit fly species have not previously established permanent populations, but which are subject to introductions of fruit flies from outside the area, the introduced population once detected, has not become established. In this paper, we apply methodology suggested mainly by Carey (1991, 1995) to introductions of Mediterranean fruit fly (Medfly), Ceratitis capitata Weid., and Queensland fruit fly (QFF) Bactrocera tryoni Froggatt (Diptera: Tephritidae) to South Australia, a state in which these species do not occur naturally and in which introductions, once detected, are actively treated. By analysing historical data associated with fruit fly outbreaks in South Australia, we demonstrate that: (i) fruit flies occur seasonally, as would occur in established populations, except there is no evidence of the critical spring generation of either species; (ii) there is no evidence of increasing frequency of outbreaks, trapped flies or larval occurrences over 29 years; (iii) there is no evidence of decreasing time between catches of adult flies as the years progress; (iv) there is no decrease in the mean number of years between outbreaks in the same locations; (v) there is no statistically significant recurrence of outbreaks in the same locations in successive years; (vi) there is no evidence of spread of outbreaks outwards from a central location; (vii) the likelihood of outbreaks in a city or town is related to the size of the human population; (viii) introduction pathways by road from Western Australia (for Medfly) and eastern Australia (for QFF) are shown to exist and to illegally or accidentally carry considerable amounts of fruit into South Australia; and (ix) there was no association between the numbers of either Queensland fruit fly or Medfly and the spatial pattern of either loquat or cumquat trees as sources of larval food in spring. This analysis supports the hypothesis that most fruit fly outbreaks in South Australia have been the result of separate introductions of infested fruit by vehicular traffic and that most of the resultant fly outbreaks were detected and died out within a few weeks of the application of eradication procedures. An alternative hypothesis, that populations of fruit flies are established in South Australia at below detectable levels, is impossible to disprove with conventional technology, but the likelihood of it being true is minimised by our analysis. Both hypotheses could be tested soon with newly developed genetic techniques.
Resumo:
1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
Malva parviflora L. (Malvaceae) is rapidly becoming a serious weed of Australian farming systems. An understanding of the variability of its seed behaviour is required to enable the development of integrated weed management strategies. Mature M. parviflora seeds were collected from four diverse locations in the Mediterranean-type climatic agricultural region of Western Australia. All of the seeds exhibited physical dormancy at collection; manual scarification or a period of fluctuating summer temperatures (50/20 degrees C or natural) were required to release dormancy. When scarified and germinated soon (1 month) after collection, the majority of seeds were able to germinate over a wide range of temperatures (5-37 degrees C) and had no light requirement. Germination was slower for seeds stored for 2 months than seeds stored for 2 years, suggesting the presence of shallow physiological dormancy. Seed populations from regions with similar annual rainfall exhibited similar dormancy release patterns; seeds from areas of low rainfall (337-344mm) were more responsive to fluctuating temperatures, releasing physical dormancy earlier than those from areas of high rainfall (436-444mm). After 36 months, maximum seedling emergence from soil in the field was 60%, with buried seeds producing 13-34% greater emergence than seeds on the surface. Scanning electron microscopy of the seed coat revealed structural differences in the chalazal region of permeable and impermeable seeds, suggesting the importance of this region in physical dormancy breakdown of M. parviflora seeds. The influence of rainfall during plant growth in determining dormancy release, and hence, germination and emergence timing, must be considered when developing management strategies for M. parviflora.
Resumo:
A high proportion of amphibian species are threatened with extinction globally, and habitat loss and degradation are the most frequently implicated causes. Rapid deforestation for the establishment of agricultural production is a primary driver of habitat loss in tropical zones where amphibian diversity is highest. Land-cover change affects native assemblages, in part, through the reduction of habitat area and the reduction of movement among remnant populations. Decreased gene flow contributes to loss of genetic diversity, which limits the ability of local populations to respond to further environmental changes. The focus of this dissertation is on the degree to which common land uses in Sarapiquí, Costa Rica impede the movement of two common amphibian species. First, I used field experiments, including displacement trials, and a behavioral landscape ecology framework to investigate the resistance of pastures to movement of Oophaga pumilio. Results from experiments demonstrate that pastures do impede movement of O. pumilio relative to forest. Microclimatic effects on movement performance as well as limited perceptual ranges likely contribute to reduced return rates through pastures. Next, I linked local processes to landscape scale estimates of resistance. I conducted experiments to measure habitat-specific costs to movement for O. pumilio and Craugastor bransfodrii, and then used experimental results to parameterize connectivity models. Model validation indicated highest support for resistance estimates generated from responses to land-use specific microclimates for both species and to predator encounters for O. pumilio. Finally, I used abundance and experiment-derived resistance estimates to analyze the effects of prevalent land uses on population genetic structure of the two focal species. While O. pumilio did not exhibit a strong response to landscape heterogeneity and was primarily structured by distances among sites, C. bransfordii genetic variation was explained by resistance estimates from abundance and experiment data. Collectivity, this work demonstrates that common land uses can offer different levels of resistance to amphibian movements in Sarapiquí and illustrates the value of investigating local scales processes to inform interpretation of landscape-scale patterns.^
Resumo:
A high proportion of amphibian species are threatened with extinction globally, and habitat loss and degradation are the most frequently implicated causes. Rapid deforestation for the establishment of agricultural production is a primary driver of habitat loss in tropical zones where amphibian diversity is highest. Land-cover change affects native assemblages, in part, through the reduction of habitat area and the reduction of movement among remnant populations. Decreased gene flow contributes to loss of genetic diversity, which limits the ability of local populations to respond to further environmental changes. The focus of this dissertation is on the degree to which common land uses in Sarapiquí, Costa Rica impede the movement of two common amphibian species. First, I used field experiments, including displacement trials, and a behavioral landscape ecology framework to investigate the resistance of pastures to movement of Oophaga pumilio. Results from experiments demonstrate that pastures do impede movement of O. pumilio relative to forest. Microclimatic effects on movement performance as well as limited perceptual ranges likely contribute to reduced return rates through pastures. Next, I linked local processes to landscape scale estimates of resistance. I conducted experiments to measure habitat-specific costs to movement for O. pumilio and Craugastor bransfodrii, and then used experimental results to parameterize connectivity models. Model validation indicated highest support for resistance estimates generated from responses to land-use specific microclimates for both species and to predator encounters for O. pumilio. Finally, I used abundance and experiment-derived resistance estimates to analyze the effects of prevalent land uses on population genetic structure of the two focal species. While O. pumilio did not exhibit a strong response to landscape heterogeneity and was primarily structured by distances among sites, C. bransfordii genetic variation was explained by resistance estimates from abundance and experiment data. Collectivity, this work demonstrates that common land uses can offer different levels of resistance to amphibian movements in Sarapiquí and illustrates the value of investigating local scales processes to inform interpretation of landscape-scale patterns.
Resumo:
Ngege, Oreochromis esculentus, originally formed the mainstay of the Lake Victoria Region (LVR) fisheries. Together with its indigenous congener O. variabilis, it was displaced from Lakes Victoria and Kyoga of LVR and was found to survive as isolated small populations within the peripheral minor lakes and reservoirs around the two lakes. Displacement of the two LVR indigenous tilapiines was thought to be principally driven by changed lake environment and predation by the introduced Nile perch, but also competition and genetic swamping by the closely related introduced and comparatively more ecologically versatile tilapine species. In a study carried out in the LVR between 1993 and 2003, micro satellites and RAPD markers were used to analyse the remnant populations so as to establish the population structure and extant genetic diversity of O. esculentus. Analyses indicated that the surviving O. esculentus retained a high proportion of genetic diversity with high differentiation between units an indication of genetic exchange between indigenous and introduced Nile tilapia where the two forms co-existed. While this heightened concern for genetic swamping of the remnant population units by the introduced tilapiines it was noteworthy that in a few of the satellite lakes where the O. esculentus was dominant evidence for introgression was weak.
Resumo:
Fumigation with phosphine gas is the primary method of controlling stored grain pests. In Turkey, phosphine has been used extensively since the 1950's. Even though high levels of phosphine resistance have been detected in several key stored products pests across the world, it has never been studied in Turkey despite this long history of phosphine use. High-level phosphine resistance has been detected and genetically characterised previously in the rust red flour beetle, Tribolium castaneum in other countries. Since this pest is also a common problem in stored grain environment in Turkey, the current study was undertaken for the first time, to investigate the distribution and strength of phosphine resistance in T. castaneum. Four strains of T. castaneum were tested through bioassays for determining the weak and strong phosphine resistance phenotypes on the basis of the response of adults to discriminating phosphine concentrations of 0.03 mg/L and 0.25 mg/L, for 20 hour exposures respectively. Phenotype testing showed all strains exhibited some level of phosphine resistance with a maximum level of 196 fold. Sequencing and genetic testing of seven field-collected strains showed that all of them carried a strong resistance allele in at the rph2 locus similar to the one previously reported. Our results show that strong resistance to phosphine is common in Turkish strains of T. castaneum.
Resumo:
Objectives: 1) To document the extent of ponded pastures and other pondage systems in and adjacent to coastal wetlands on the central coast of Queensland. 2) To assess the movement, growth and survival of barramundi in ponded pastures. 3) To assess the utilisation by barramundi of ponded pastures and wetlands dominated by exotic grass species. 4) To identify appropriate wetland management strategies for facilitating barramundi movement and survival in ponded pastures and other pondage systems. 5) To document the species composition of finfish populations and their relative abundance in ponded pastures.
Resumo:
Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.
Resumo:
Transition to diets that are high in saturated fat and sugar has caused a global public health concern as the pattern of food consumption is a mayor modifiable risk factor for chronic non-communicable diseases Although agri food systems are intimately associated with this transition, agriculture and health sectors are largely disconnected in their priorities policy, and analysis with neither side considering the complex inter relation between agri trade patterns of food consumption health, and development We show the importance of connection of these perspectives through estimation of the effect of adopting a healthy diet on population health, agricultural production trade the economy and livelihoods, with a computable general equilibrium approach on the basis of case studies from the UK and Brazil we suggest that benefits of a healthy diet policy will vary substantially between different populations, not only because of population dietary intake but also because of agricultural production trade and other economic factors