870 resultados para Agent-Based Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods like Event History Analysis can show the existence of diffusion and part of its nature, but do not study the process itself. Nowadays, thanks to the increasing performance of computers, processes can be studied using computational modeling. This thesis presents an agent-based model of policy diffusion mainly inspired from the model developed by Braun and Gilardi (2006). I first start by developing a theoretical framework of policy diffusion that presents the main internal drivers of policy diffusion - such as the preference for the policy, the effectiveness of the policy, the institutional constraints, and the ideology - and its main mechanisms, namely learning, competition, emulation, and coercion. Therefore diffusion, expressed by these interdependencies, is a complex process that needs to be studied with computational agent-based modeling. In a second step, computational agent-based modeling is defined along with its most significant concepts: complexity and emergence. Using computational agent-based modeling implies the development of an algorithm and its programming. When this latter has been developed, we let the different agents interact. Consequently, a phenomenon of diffusion, derived from learning, emerges, meaning that the choice made by an agent is conditional to that made by its neighbors. As a result, learning follows an inverted S-curve, which leads to partial convergence - global divergence and local convergence - that triggers the emergence of political clusters; i.e. the creation of regions with the same policy. Furthermore, the average effectiveness in this computational world tends to follow a J-shaped curve, meaning that not only time is needed for a policy to deploy its effects, but that it also takes time for a country to find the best-suited policy. To conclude, diffusion is an emergent phenomenon from complex interactions and its outcomes as ensued from my model are in line with the theoretical expectations and the empirical evidence.Les méthodes d'analyse de biographie (event history analysis) permettent de mettre en évidence l'existence de phénomènes de diffusion et de les décrire, mais ne permettent pas d'en étudier le processus. Les simulations informatiques, grâce aux performances croissantes des ordinateurs, rendent possible l'étude des processus en tant que tels. Cette thèse, basée sur le modèle théorique développé par Braun et Gilardi (2006), présente une simulation centrée sur les agents des phénomènes de diffusion des politiques. Le point de départ de ce travail met en lumière, au niveau théorique, les principaux facteurs de changement internes à un pays : la préférence pour une politique donnée, l'efficacité de cette dernière, les contraintes institutionnelles, l'idéologie, et les principaux mécanismes de diffusion que sont l'apprentissage, la compétition, l'émulation et la coercition. La diffusion, définie par l'interdépendance des différents acteurs, est un système complexe dont l'étude est rendue possible par les simulations centrées sur les agents. Au niveau méthodologique, nous présenterons également les principaux concepts sous-jacents aux simulations, notamment la complexité et l'émergence. De plus, l'utilisation de simulations informatiques implique le développement d'un algorithme et sa programmation. Cette dernière réalisée, les agents peuvent interagir, avec comme résultat l'émergence d'un phénomène de diffusion, dérivé de l'apprentissage, où le choix d'un agent dépend en grande partie de ceux faits par ses voisins. De plus, ce phénomène suit une courbe en S caractéristique, poussant à la création de régions politiquement identiques, mais divergentes au niveau globale. Enfin, l'efficacité moyenne, dans ce monde simulé, suit une courbe en J, ce qui signifie qu'il faut du temps, non seulement pour que la politique montre ses effets, mais également pour qu'un pays introduise la politique la plus efficace. En conclusion, la diffusion est un phénomène émergent résultant d'interactions complexes dont les résultats du processus tel que développé dans ce modèle correspondent tant aux attentes théoriques qu'aux résultats pratiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agent-based computational economics is becoming widely used in practice. This paperexplores the consistency of some of its standard techniques. We focus in particular on prevailingwholesale electricity trading simulation methods. We include different supply and demandrepresentations and propose the Experience-Weighted Attractions method to include severalbehavioural algorithms. We compare the results across assumptions and to economic theorypredictions. The match is good under best-response and reinforcement learning but not underfictitious play. The simulations perform well under flat and upward-slopping supply bidding,and also for plausible demand elasticity assumptions. Learning is influenced by the number ofbids per plant and the initial conditions. The overall conclusion is that agent-based simulationassumptions are far from innocuous. We link their performance to underlying features, andidentify those that are better suited to model wholesale electricity markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we highlight the importance of the operational costs in explaining economic growth and analyze how the industrial structure affects the growth rate of the economy. If there is monopolistic competition only in an intermediate goods sector, then production growth coincides with consumption growth. Moreover, the pattern of growth depends on the particular form of the operational cost. If the monopolistically competitive sector is the final goods sector, then per capita production is constant but per capita effective consumption or welfare grows. Finally, we modify again the industrial structure of the economy and show an economy with two different growth speeds, one for production and another for effective consumption. Thus, both the operational cost and the particular structure of the sector that produces the final goods determines ultimately the pattern of growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract in English : Ubiquitous Computing is the emerging trend in computing systems. Based on this observation this thesis proposes an analysis of the hardware and environmental constraints that rule pervasive platforms. These constraints have a strong impact on the programming of such platforms. Therefore solutions are proposed to facilitate this programming both at the platform and node levels. The first contribution presented in this document proposes a combination of agentoriented programming with the principles of bio-inspiration (Phylogenesys, Ontogenesys and Epigenesys) to program pervasive platforms such as the PERvasive computing framework for modeling comPLEX virtually Unbounded Systems platform. The second contribution proposes a method to program efficiently parallelizable applications on each computing node of this platform. Résumé en Français : Basée sur le constat que les calculs ubiquitaires vont devenir le paradigme de programmation dans les années à venir, cette thèse propose une analyse des contraintes matérielles et environnementale auxquelles sont soumises les plateformes pervasives. Ces contraintes ayant un impact fort sur la programmation des plateformes. Des solutions sont donc proposées pour faciliter cette programmation tant au niveau de l'ensemble des noeuds qu'au niveau de chacun des noeuds de la plateforme. La première contribution présentée dans ce document propose d'utiliser une alliance de programmation orientée agent avec les grands principes de la bio-inspiration (Phylogénèse, Ontogénèse et Épigénèse). Ceci pour répondres aux contraintes de programmation de plateformes pervasives comme la plateforme PERvasive computing framework for modeling comPLEX virtually Unbounded Systems . La seconde contribution propose quant à elle une méthode permettant de programmer efficacement des applications parallélisable sur chaque noeud de calcul de la plateforme

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we highlight the importance of the operational costs in explaining economic growth and analyze how the industrial structure affects the growth rate of the economy. If there is monopolistic competition only in an intermediate goods sector, then production growth coincides with consumption growth. Moreover, the pattern of growth depends on the particular form of the operational cost. If the monopolistically competitive sector is the final goods sector, then per capita production is constant but per capita effective consumption or welfare grows. Finally, we modify again the industrial structure of the economy and show an economy with two different growth speeds, one for production and another for effective consumption. Thus, both the operational cost and the particular structure of the sector that produces the final goods determines ultimately the pattern of growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an agent-based model with the aim of studying how macro-level dynamics of spatial distances among interacting individuals in a closed space emerge from micro-level dyadic and local interactions. Our agents moved on a lattice (referred to as a room) using a model implemented in a computer program called P-Space in order to minimize their dissatisfaction, defined as a function of the discrepancy between the real distance and the ideal, or desired, distance between agents. Ideal distances evolved in accordance with the agent's personal and social space, which changed throughout the dynamics of the interactions among the agents. In the first set of simulations we studied the effects of the parameters of the function that generated ideal distances, and in a second set we explored how group macrolevel behavior depended on model parameters and other variables. We learned that certain parameter values yielded consistent patterns in the agents' personal and social spaces, which in turn led to avoidance and approaching behaviors in the agents. We also found that the spatial behavior of the group of agents as a whole was influenced by the values of the model parameters, as well as by other variables such as the number of agents. Our work demonstrates that the bottom-up approach is a useful way of explaining macro-level spatial behavior. The proposed model is also shown to be a powerful tool for simulating the spatial behavior of groups of interacting individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ACACIA, an agent-based program implemented in Java StarLogo 2.0 that simulates a two-dimensional microworld populated by agents, obstacles and goals. Our program simulates how agents can reach long-term goals by following sensorial-motor couplings (SMCs) that control how the agents interact with their environment and other agents through a process of local categorization. Thus, while acting in accordance with this set of SMCs, the agents reach their goals through the emergence of global behaviors. This agent-based simulation program would allow us to understand some psychological processes such as planning behavior from the point of view that the complexity of these processes is the result of agent-environment interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied how leaders emerge in a group as a consequence of interactions among its members. We propose that leaders can emerge as a consequence of a self-organized process based on local rules of dyadic interactions among individuals. Flocks are an example of self-organized behaviour in a group and properties similar to those observed in flocks might also explain some of the dynamics and organization of human groups. We developed an agent-based model that generated flocks in a virtual world and implemented it in a multi-agent simulation computer program that computed indices at each time step of the simulation to quantify the degree to which a group moved in a coordinated way (index of flocking behaviour) and the degree to which specific individuals led the group (index of hierarchical leadership). We ran several series of simulations in order to test our model and determine how these indices behaved under specific agent and world conditions. We identified the agent, world property, and model parameters that made stable, compact flocks emerge, and explored possible environmental properties that predicted the probability of becoming a leader.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We empirically applied the GrooFiWorld agent-based model (Puga-González et al. 2009) in a group of captive mangabeys (Cercocebus torquatus). We analysed several measurements related to aggression and affiliative patterns. The group adopted a combination of despotic and egalitarian behaviours resulting from the behavioural flexibility observed in the Cercopithecinae subfamily. Our study also demonstrates that the GrooFiWorld agent-based model can be extended to other members of the Cercopithecinae subfamily generating parsimonious hypotheses related to the social organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.