991 resultados para African signal-grass
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Mycelial growth strains of POS 98/38, POS 09/100, POS 09/101, and POS 09/102 of Pleurotus ostreatus were evaluated in culture media with various compositions based on extracts of substrates formulated with sugar cane bagasse together with straws and grasses, and with or without nitrogen supplementation. The evaluation was performed during incubation regularly with a ruler graduated in millimeters until total colonization of the culture medium contained in Petri dishes. The statistical model explaining the kinetics of mycelial growth of mushroom strains of P. ostreatus as a deterministic component has an exponential Gompertz function. The results show that the culture medium with sugar cane straw and brizantha grass (supplemented) showed the highest rates of mycelial growth, regardless of strain used compared to wheat straw-based culture media with had the lowest velocities of growth, regardless of supplementation and strains studied.
Resumo:
Modern sugarcane cultivars are complex hybrids resulting from crosses among several Saccharum species. Traditional breeding methods have been employed extensively in different countries over the past decades to develop varieties with increased sucrose yield and resistance to pests and diseases. Conventional variety improvement, however, may be limited by the narrow pool of suitable genes. Thus, molecular genetics is seen as a promising tool to assist in the process of developing improved varieties. The SUCEST-FUN Project (http://sucest-fun.org) aims to associate function with sugarcane genes using a variety of tools, in particular those that enable the study of the sugarcane transcriptome. An extensive analysis has been conducted to characterise, phenotypically, sugarcane genotypes with regard to their sucrose content, biomass and drought responses. Through the analysis of different cultivars, genes associated with sucrose content, yield, lignin and drought have been identified. Currently, tools are being developed to determine signalling and regulatory networks in grasses, and to sequence the sugarcane genome, as well as to identify sugarcane promoters. This is being implemented through the SUCEST-FUN (http://sucest-fun.org) and GRASSIUS databases (http://grassius.org), the cloning of sugarcane promoters, the identification of cis-regulatory elements (CRE) using Chromatin Immunoprecipitation-sequencing (ChIP-Seq) and the generation of a comprehensive Signal Transduction and Transcription gene catalogue (SUCAST Catalogue).
Resumo:
We tested the early performance of 16 native early-, mid-, and late-successional tree species in response to four intensities of grass removal in an abandoned cattle pasture dominated by the introduced, invasive African grass, Cynodon plectostachyus, within the Lacandon rainforest region, southeast Mexico. The increase in grass removals significantly improved the performance of many species, especially of early-and mid-successional species, while performance of late-successional species was relatively poor and did not differ significantly among treatments. Good site preparation and at least one additional grass removal four months after seedling transplant were found to be essential; additional grass removals led to improved significantly performance of saplings in most cases. In order to evaluate the potential of transplanting tree seedlings successfully in abandoned tropical pastures, we developed a "planting risk index", combining field performance measurements and plantation cost estimations. Our results showed a great potential for establishing restoration plantings with many early-and mid-successional species. Although planting risk of late-successional species was considered high, certain species showed some possibilities of acclimation after 18 months and should be considered in future plantation arrangements in view of their long-term contributions to biodiversity maintenance and also to human welfare through delivery of ecosystem services. Conducting a planting risk analysis can help avoid failure of restoration strategies involving simultaneous planting of early-, mid-, and late-successional tree species. This in turn will improve cost-effectiveness of initial interventions in large-scale, long-term restoration programs.
Resumo:
Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Resumo:
Grazing ungulates play a key role in many ecosystems worldwide and can form diverse assemblages, such as in African savannahs. In many of these ecosystems, present-day ungulate communities are impoverished subsets of once diverse assemblages. While we know that excluding all ungulates from grasslands can exert major effects on both the structure and composition of the vegetation, how different individual ungulate species may have contrasting effects on grassland communities remains poorly understood. Here, we performed a long-term ‘Russian doll’ grazing exclosure experiment in an African savannah to test for the effects of different size classes of grazers on grassland structure and composition. At five sites, grazer species of decreasing size class (ranging from white rhino to scrub hare) were excluded using four fence types, to experimentally create different realized grazer assemblages. The vegetation structure and the grass functional community composition were characterized in 6 different years over a 10-year period. Additionally, animal footprints were counted to quantify the abundance of different ungulate species in each treatment. We found that while vegetation height was mostly driven by total grazing pressure of all species together, ungulate community composition best explained the functional community composition of grasses. In the short term, smaller ungulate species (‘mesoherbivores’) had strongest effects on vegetation composition, by shifting communities towards dominance by species with low specific leaf area and low nutritional value. In the long term, large grazers had stronger but similar effects on the functional composition of the system. Surprisingly, the largest ‘mega-herbivore’, the white rhinoceros, did not have strong effects on the vegetation structure or composition. Synthesis. Our results support the idea that different size classes of grazers have varying effects on the functional composition of grassland plant communities. Therefore, the worldwide decline in the diversity of ungulate species is expected to have (had) major impacts on community composition and functioning of grassland ecosystems, even if total grazing pressure has remained constant, for example, due to replacement by livestock.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Resumo:
Seven sediment cores from the cruises of the "Meteor" and "Valdivia" were examined palynologically. The cores were retrieved from the lower continental slope in the area of between 33.5° N and 8° N, off the West African coast. Most of the cores contain sediments from the last Glacial and Interglacial period. In some cases, the Holocene sediments are missing. Some individual cores contain sediments also from earlier Glacial and Interglacial periods. The main reason for making this palynological study was to find out the differences between the vegetation of Glacial and Interglacial periods in those parts of West Africa which at present belong to the Mediterranean zone, the Sahara and the zones of the savannas and tropical forests. In today's Mediterranean vegetation zone at core 33.5° N, forests and deciduous forests in particular, are missing during Glacial conditions. Semi-deserts are found instead of these. In the early isotope stage 1, there is a very significant development of forests which contain evergreen oaks; this is the Mediterranean type of vegestation development. The Sahara type of vegetation development is shown in four cores from between 27° N and 19° N. The differences between Glacial and Interglacial periods are very small. It must be assumed therefore that in this latitudes, both Glacial and Interglacial conditions gave rise to desert generally. The results are in favour of a slightly more arid climate during Glacial and more humid one during Interglacial periods. The southern boundary of the Sahara and the adjacent savannas with grassland and tropical woods were situated more to the south during the Glacial periods than they were during the Interglacial ones. In front of today's savanna belt, it can be seen from the palynological results that there are considerable differences between the vegetation of Glacial and Interglacial periods. The woods are more important in Interglacial periods. During the Glacial periods these are replaced from north to south decreasingly by grassland (savanna and rainforest type of vegetation development). The southern limit of the Sahara during stage 2 was somewhat between 12° N and 8° N which is between 1.5 and 5 degrees in latitude further south than it i s today. Not only do these differences in climate and vegetation apply to the maximum of the last Glacial and for the Holocene, but they apparently apply also to the older Glacial and Interglacial periods, where they have been found in the profiles. The North African deset belt can be said to have expanded during Glacial times both towards the north and towards the south. All the available evidence of this study indicates that the grass land or the semi-desert of the Southern Europe cam einto connection with those of the N Africa; there could not have been any forest zone between them. The present study was also a good opportunity for investigating some of the basic marine palynological problems. The very well known overrepresentation of pollen grains of the genus Pinus in marine sediments can be traced as fa as 21° N. The present southern limit for the genus Pinus is on the Canaries and on the African continent as approximately 31° N. Highest values of Ephedra pollen grains even occur south of the main area of the present distribution of that genus. These does not seem to be any satisfactory explanation for this. In general, it would appear that the transport of pollen grains from the north is more important than transport from the south. The results so far, indicate strongly that further palynological studies are necessary. These should concentrate particularly on cores from between 33° N and 27° N as well as between 17° N and 10° N. It would also be useful to have a more detailed examination of sediments from the last Intergalcial period (substage 5 e). Absolute pollen counts and more general examination of surface samples would be desirable. Surface samples should be taken from the shelf down to the bottom of the continental slope in different latitudes.
Resumo:
Some invasive grasses have been reported to change fire behavior in invaded plant communities. Urochloa brizantha is an aggressive invasive grass in the Brazilian Cerrado, an ecosystem where fire is a common disturbance. We investigated the effects of U. brizantha on fire behavior in an open Cerrado physiognomy in Central Brazil. Using experimental burnings we compared fire behavior at both the community and the individual plant level in invaded (UJ) and non-invaded (NJ) areas burned in July. We also assessed the effect of fire season in invaded areas by comparing July (UJ) and October (UO) burnings. We evaluated the following variables: fuel load, fuel moisture, combustion efficiency, maximum fire temperature, flame height, and fire intensity. Additionally, we evaluated the temperatures reached under invasive and native grass tussocks in both seasons. Fuel load, combustion efficiency, and fire intensity were higher in NJ than in UJ, whilst flame height showed the opposite trend. Fuel amount and fire intensity were higher in October than in July. At the individual plant level, U. brizantha moisture was higher than that of native species, however, temperatures reaching ≥600 °C at ground level were more frequent under U. brizantha tussocks than under native grasses. At the community level, the invasive grass modified fire behavior towards lower intensity, lower burning efficiency, and higher flame height. These results provide essential information for the planning of prescribed burnings in invaded Cerrado areas.
Resumo:
Mode of access: Internet.
Resumo:
We report the clinical characteristics of a schizophrenia sample of 409 pedigrees-263 of European ancestry ( EA) and 146 of African American ancestry ( AA)-together with the results of a genome scan ( with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia ( SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs ( ASPs) ( 279 EA and 124 AA) and 100 all-possible half-sibling ASPs ( 15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 ( empirical Z likelihood-ratio score [ Z(lr)] threshold >= 2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >= 2.0 in 8p were observed from 30.7 cM to 61.7 cM ( Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 ( equivalent Kong-Cox LOD of 2.30) near D8S1771 ( at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 ( NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.
Resumo:
The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.