999 resultados para Aesthetic function
Resumo:
Persistent use of safety restraints prevents deaths and reduces the severity and number of injuries resulting from motor vehicle crashes. However, safety-restraint use rates in the United States have been below those of other nations with safety-restraint enforcement laws. With a better understanding of the relationship between safety-restraint law enforcement and safety-restraint use, programs can be implemented to decrease the number of deaths and injuries resulting from motor vehicle crashes. Does safety-restraint use increase as enforcement increases? Do motorists increase their safety-restraint use in response to the general presence of law enforcement or to targeted law enforcement efforts? Does a relationship between enforcement and restraint use exist at the countywide level? A logistic regression model was estimated by using county-level safety-restraint use data and traffic citation statistics collected in 13 counties within the state of Florida in 1997. The model results suggest that safety-restraint use is positively correlated with enforcement intensity, is negatively correlated with safety-restraint enforcement coverage (in lanemiles of enforcement coverage), and is greater in urban than rural areas. The quantification of these relationships may assist Florida and other law enforcement agencies in raising safety-restraint use rates by allocating limited funds more efficiently either by allocating additional time for enforcement activities of the existing force or by increasing enforcement staff. In addition, the research supports a commonsense notion that enforcement activities do result in behavioral response.
Resumo:
Tilted disc syndrome can cause visual field defects due to an optic disc anomaly. Recent electrophysiological findings demonstrate reduced central outer retinal function with ophthalmoscopically normal maculae. We measured macular sensitivity with the microperimeter and performed psychophysical assessment of mesopic rod and cone luminance temporal sensitivity (critical fusion frequency)in a 52-year-old male patient with tilted disc syndrome and ophthalmoscopically normal maculae. We found a marked reduction of sensitivity in the central 20 degrees and reduced rod- and cone-mediated mesopic visual function. Our findings extend previous electrophysiological data that suggest an outer retinal involvement of cone pathways and present a case with rod and cone impairment mediated via the magnocellular pathway in uncomplicated tilted disc syndrome.
Resumo:
This investigation describes the prevalence of upper-body symptoms in a population-based sample of women with breast cancer (BC) and examines their relationships with upper-body function (UBF) and lymphoedema, as two clinically important sequelae. Australian women (n=287) with unilateral BC were assessed at three-monthly intervals, from six to 18 months post-surgery (PS). Participants reported the presence and intensity of upper-body symptoms on the treated side. Objective and self-reported UBF and lymphoedema (bioimpedance spectroscopy) were also assessed. Approximately 50% of women reported at least one moderate-to-extreme symptom at 6- and at 18-months PS. There was a significant relationship between symptoms and function (p<0.01), whereby perceived and objective function declined with increasing number of symptoms present. Those with lymphoedema were more likely to report multiple symptoms and presence of symptoms at baseline increased risk of lymphoedema (ORs>1.3, p=0.02). Although, presence of symptoms explained only 5.5% of the variation in the odds of lymphoedema. Upper-body symptoms are common and persistent following breast cancer and are associated with clinical ramifications, including reduced UBF and increased risk of developing lymphoedema. However, using the presence of symptoms as a diagnostic indicator of lymphoedema is limited.
Resumo:
BLAST Atlas is a visual analysis system for comparative genomics that supports genome-wide gene characterisation, functional assignment and function-based browsing of one or more chromosomes. Inspired by applications such as the WorldWide Telescope, Bing Maps 3D and Google Earth, BLAST Atlas uses novel three-dimensional gene and function views that provide a highly interactive and intuitive way for scientists to navigate, query and compare gene annotations. The system can be used for gene identification and functional assignment or as a function-based multiple genome comparison tool which complements existing position based comparison and alignment viewers.
Resumo:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
This paper explores principles of contemporary aesthetics to suggest a basis for determining qualitative outcomes of artistic works in two contexts: the arts industry and the academy setting of practice-led research. Commonly articulated measures of quality—creativity and innovation—are questioned as mere rhetoric if not framed in specific ways in the two discrete settings. The paper also interrogates generally held assumptions that a longer time to develop work and greater periods of self-reflexivity will produce higher calibre artistic outcomes. The unease produced by apparent differences in qualitative outcomes between art works created in an industry setting and those created through practice-led research is analysed through three interconnected framing devices: intention, contextual parameters and criteria for evaluation, in conjunction with the relationships between the art work, the artist and the audience/viewer/listener. Common and differentiated criteria in the two contexts are explored, leading to the conclusion that innovation is more likely to be revealed in the end product in an industry context whereas in practice-led research it may be in the methodological processes of creating the work. While identifying and acknowledging that the two contexts encourage and produce distinctive qualitative artistic outcomes, both of value to the arts and the academy, the paper recommends ways in which closer formal liaison between industry artists and practice-led artists and supervisors might occur in order to ensure ongoing mutual influence and relevance.
Resumo:
Objective--To determine whether heart failure with preserved systolic function (HFPSF) has different natural history from left ventricular systolic dysfunction (LVSD). Design and setting--A retrospective analysis of 10 years of data (for patients admitted between 1 July 1994 and 30 June 2004, and with a study census date of 30 June 2005) routinely collected as part of clinical practice in a large tertiary referral hospital.Main outcome measures-- Sociodemographic characteristics, diagnostic features, comorbid conditions, pharmacotherapies, readmission rates and survival.Results--Of the 2961 patients admitted with chronic heart failure, 753 had echocardiograms available for this analysis. Of these, 189 (25%) had normal left ventricular size and systolic function. In comparison to patients with LVSD, those with HFPSF were more often female (62.4% v 38.5%; P = 0.001), had less social support, and were more likely to live in nursing homes (17.9% v 7.6%; P < 0.001), and had a greater prevalence of renal impairment (86.7% v 6.2%; P = 0.004), anaemia (34.3% v 6.3%; P = 0.013) and atrial fibrillation (51.3% v 47.1%; P = 0.008), but significantly less ischaemic heart disease (53.4% v 81.2%; P = 0.001). Patients with HFPSF were less likely to be prescribed an angiotensin-converting enzyme inhibitor (61.9% v 72.5%; P = 0.008); carvedilol was used more frequently in LVSD (1.5% v 8.8%; P < 0.001). Readmission rates were higher in the HFPSF group (median, 2 v 1.5 admissions; P = 0.032), particularly for malignancy (4.2% v 1.8%; P < 0.001) and anaemia (3.9% v 2.3%; P < 0.001). Both groups had the same poor survival rate (P = 0.912). Conclusions--Patients with HFPSF were predominantly older women with less social support and higher readmission rates for associated comorbid illnesses. We therefore propose that reduced survival in HFPSF may relate more to comorbid conditions than suboptimal cardiac management.
Resumo:
Objective: To investigate how age-related declines in vision (particularly contrast sensitivity), simulated using cataract-goggles and low-contrast stimuli, influence the accuracy and speed of cognitive test performance in older adults. An additional aim was to investigate whether declines in vision differentially affect secondary more than primary memory. Method: Using a fully within-subjects design, 50 older drivers aged 66-87 years completed two tests of cognitive performance - letter matching (perceptual speed) and symbol recall (short-term memory) - under different viewing conditions that degraded visual input (low-contrast stimuli, cataract-goggles, and low-contrast stimuli combined with cataract-goggles, compared with normal viewing). However, presentation time was also manipulated for letter matching. Visual function, as measured using standard charts, was taken into account in statistical analyses. Results: Accuracy and speed for cognitive tasks were significantly impaired when visual input was degraded. Furthermore, cognitive performance was positively associated with contrast sensitivity. Presentation time did not influence cognitive performance, and visual gradation did not differentially influence primary and secondary memory. Conclusion: Age-related declines in visual function can impact on the accuracy and speed of cognitive performance, and therefore the cognitive abilities of older adults may be underestimated in neuropsychological testing. It is thus critical that visual function be assessed prior to testing, and that stimuli be adapted to older adults' sensory capabilities (e.g., by maximising stimuli contrast).
Resumo:
Most research on numerical development in children is behavioural, focusing on accuracy and response time in different problem formats. However, Temple and Posner (1998) used ERPs and the numerical distance task with 5-year-olds to show that the development of numerical representations is difficult to disentangle from the development of the executive components of response organization and execution. Here we use the numerical Stroop paradigm (NSP) and ERPs to study possible executive interference in numerical processing tasks in 6–8-year-old children. In the NSP, the numerical magnitude of the digits is task-relevant and the physical size of the digits is task-irrelevant. We show that younger children are highly susceptible to interference from irrelevant physical information such as digit size, but that access to the numerical representation is almost as fast in young children as in adults. We argue that the developmental trajectories for executive function and numerical processing may act together to determine numerical development in young children.
Resumo:
The purpose of this research is to report preliminary empirical evidence regarding the association between common physical performance measures and health-related quality of life (HRQoL) of hospitalized older adults recovering from illness and injury. Frequently, these patients do not return to premorbid levels of independence and physical ability. Rehabilitation for this population often focuses on improving physical functioning and mobility with the intention of maximizing their HRQoL for discharge and thereafter. For this reason, longitudinal use of physical performance measures as an indicator of improvement in physical functioning (and thus HRQoL) is common. Although this is a logical approach, there have been mixed results from previous investigations into the association between common measures of physical function and HRQoL amongst other adult patient populations.1,2 There has been no previous investigation reporting the association between HRQoL and a variety of common physical performance measures in hospitalized older adults.
Resumo:
Many cities worldwide face the prospect of major transformation as the world moves towards a global information order. In this new era, urban economies are being radically altered by dynamic processes of economic and spatial restructuring. The result is the creation of ‘informational cities’ or its new and more popular name, ‘knowledge cities’. For the last two centuries, social production had been primarily understood and shaped by neo-classical economic thought that recognized only three factors of production: land, labor and capital. Knowledge, education, and intellectual capacity were secondary, if not incidental, factors. Human capital was assumed to be either embedded in labor or just one of numerous categories of capital. In the last decades, it has become apparent that knowledge is sufficiently important to deserve recognition as a fourth factor of production. Knowledge and information and the social and technological settings for their production and communication are now seen as keys to development and economic prosperity. The rise of knowledge-based opportunity has, in many cases, been accompanied by a concomitant decline in traditional industrial activity. The replacement of physical commodity production by more abstract forms of production (e.g. information, ideas, and knowledge) has, however paradoxically, reinforced the importance of central places and led to the formation of knowledge cities. Knowledge is produced, marketed and exchanged mainly in cities. Therefore, knowledge cities aim to assist decision-makers in making their cities compatible with the knowledge economy and thus able to compete with other cities. Knowledge cities enable their citizens to foster knowledge creation, knowledge exchange and innovation. They also encourage the continuous creation, sharing, evaluation, renewal and update of knowledge. To compete nationally and internationally, cities need knowledge infrastructures (e.g. universities, research and development institutes); a concentration of well-educated people; technological, mainly electronic, infrastructure; and connections to the global economy (e.g. international companies and finance institutions for trade and investment). Moreover, they must possess the people and things necessary for the production of knowledge and, as importantly, function as breeding grounds for talent and innovation. The economy of a knowledge city creates high value-added products using research, technology, and brainpower. Private and the public sectors value knowledge, spend money on its discovery and dissemination and, ultimately, harness it to create goods and services. Although many cities call themselves knowledge cities, currently, only a few cities around the world (e.g., Barcelona, Delft, Dublin, Montreal, Munich, and Stockholm) have earned that label. Many other cities aspire to the status of knowledge city through urban development programs that target knowledge-based urban development. Examples include Copenhagen, Dubai, Manchester, Melbourne, Monterrey, Singapore, and Shanghai. Knowledge-Based Urban Development To date, the development of most knowledge cities has proceeded organically as a dependent and derivative effect of global market forces. Urban and regional planning has responded slowly, and sometimes not at all, to the challenges and the opportunities of the knowledge city. That is changing, however. Knowledge-based urban development potentially brings both economic prosperity and a sustainable socio-spatial order. Its goal is to produce and circulate abstract work. The globalization of the world in the last decades of the twentieth century was a dialectical process. On one hand, as the tyranny of distance was eroded, economic networks of production and consumption were constituted at a global scale. At the same time, spatial proximity remained as important as ever, if not more so, for knowledge-based urban development. Mediated by information and communication technology, personal contact, and the medium of tacit knowledge, organizational and institutional interactions are still closely associated with spatial proximity. The clustering of knowledge production is essential for fostering innovation and wealth creation. The social benefits of knowledge-based urban development extend beyond aggregate economic growth. On the one hand is the possibility of a particularly resilient form of urban development secured in a network of connections anchored at local, national, and global coordinates. On the other hand, quality of place and life, defined by the level of public service (e.g. health and education) and by the conservation and development of the cultural, aesthetic and ecological values give cities their character and attract or repel the creative class of knowledge workers, is a prerequisite for successful knowledge-based urban development. The goal is a secure economy in a human setting: in short, smart growth or sustainable urban development.
Resumo:
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.