121 resultados para Aeroacoustics


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

气动声学是一门流动力学和声学之间的交叉学科,主要研究流动及其与物体相互作用产生噪声的机理。动用计算技术研究气动声学问题的手段称为计算气动声学。本文的目的是,基于高精度数值算法的研究,分别运用Lighthill比拟理论、Kirchhoff积分和直接数值模拟等方法,针对翼型绕流、激波-涡干扰和轴对称射流,研究了物面非定常脉动压力、涡脱落、激波-涡干扰以及涡对并等产生噪声的机理。首先针对声场与主流场在能级和特征尺度等方面的差异,从空间离散角度分析了几种差分格式,表明迎风紧致格式/对称紧致格式有较小的数值色散、耗散和各向异性误差,因而适用于气动噪声的计算。以Runge-Kutta格式为例,对时间离散带来的误差进行了分析。指出对声波计算来说,仅考虑格式稳定性是不够的,时间步长还受到允许色散误差和耗散误差的限制。基于保色戎关系的思想,构造了优化Runge-Kutta格式。处例显示优化Runge-Kutta格式相对于经典格式有更高的计算效率。采用3阶迎风紧致格式和3阶Runge-Kutta格式数值模拟了NACA0012翼型的可压缩非定常绕流流场,并将此流场作为近场声源,运用声学比拟理论对偶极子声和四极子声进行研究。结果指出,主流速度对远场声压有决定性影响,在来流马赫数较大时,四极子噪声和偶极子噪声具有相同量级,不能被忽略,表明了可压缩效应对声场的影响。采用5阶迎风紧致格式和4阶Runge-Kutta格式求解非定常可压缩Navier-Stokes方程,对激波-单涡/双涡干扰导致的声场进行了直接数值模拟。详细研究了激波-涡干扰产生噪声的机理,指出噪声的产生及其性质和激波变形密切相关。研究了近场噪声衰减和传播距离r的关系,发现噪声衰减大致和r~(4/5)而不是r~(1/2)成反比关系,提出这种差异是由流场的非线性效应引起的。构造了Kirchhoff积分和非定常流动计算相结合的算法。采用5阶迎风紧致格式和3阶Runge-Kutta格式对亚声速轴对称射流进行直接数值模拟。将射流流场作为近场声源,结合Kirchhoff方法求解远场 气动噪声。数值结果表明远场噪声具有方向性,噪声声压在离开对称轴20°处达到最大值。随着传播距离增大,噪声方向性逐渐减弱。

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sound emission from open turbulent flames is dictated by the two-point spatial correlation of rate of change of fluctuating heat release rate and this correlation has not been investigated directly in the past studies. Turbulent premixed flame data from DNS and laser diagnostics are analyzed to study this correlation function and the two-point spatial correlation of the fluctuating heat release rate. This shows that the correlation functions have simple Gaussian forms whose integral length scale is related to the laminar flame thickness and amplitude depends on the spatial distribution of the time-mean rate of heat release. These results and RANS-CFD solution of open turbulent premixed flames are post-processed to obtain the far field SPL, which agrees well with measured values. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Silent Aircraft airframe has a flying wing design with a large wing planform and a propulsion system embedded in the rear of the airframe with intake on the upper surface of the wing. In the present paper, boundary element calculations are presented to evaluate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the Silent Aircraft airframe, a few two-dimensional problems are considered that provide some physical insight into the shielding calculations. Mean flow refraction effects due to forward flight motion are accounted for by a simple time transformation that decouples the mean-flow and acoustic-field calculations. It is shown that significant amount of shielding can be obtained in the shadow region where there is no direct line of sight between the source and observer. The boundary element solutions are restricted to low frequencies. We have used a simple physically-based model to extend the solution to higher frequencies. Based on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction in the overall sound pressure level of forward-propagating fan noise because of shielding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Rijke tube is used to demonstrate model-based control of a combustion instability, where controller design is based on measurement of the unstable system. The Rijke tube used was of length 0.75m and had a grid-stabilised laminar flame in its lower half. A microphone was used as a sensor and a loudspeaker as an actuator for active control. The open loop transfer function (OLTF) required for controller design was that from the actuator to the sensor. This was measured experimentally by sending a signal with two components to the actuator. The first was a control component from an empirically designed controller, which was used to stabilise the system, thus eliminating the non-linear limit cycle. The second was a high bandwidth signal for identification of the OLTF. This approach to measuring the OLTF is generic and can be applied to large-scale combustors. The measured OLTF showed that only the fundamental mode of the tube was unstable; this was consistent with the OLTF predicted by a mathematical model of the tube, involving 1-D linear acoustic waves and a time delay heat release model. Based on the measured OLTF, a controller to stabilise the instability was designed using Nyquist techniques. This was implemented and was seen to result in an 80dB reduction in the microphone pressure spectrum. A robustness study was performed by adding an additional length to the top of the Rijke tobe. The controller was found to achieve control up to an increase in tube length of 19%. This compared favourably with the empirical controller, which lost control for an increase in tube length of less than 3%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.