986 resultados para Active oxygen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d catalysts were synthesized by using a low-temperature sonochemical method and characterized by using XRD, TEM, XPS, FTIR, and BET surface analyzer. The catalytic activities of these compounds were investigated for the watergas shift reaction in the temperature range of 140-440 degrees C. The substitution of Si in Ce0.98Pt0.02O2-d increased the releasing capacity of lattice oxygen, whereas the substitution of Al decreased the reducibility of Ce0.98Pt0.02O2-d, as evidenced by hydrogen temperature-programmed reduction studies. However, both the catalysts showed a considerable improvement in terms of activity and stability compared to Ce0.98Pt0.02O2-d. The combined activity measurement and characterization results suggest that the increase in the oxygen vacancy, which acts as a dissociation center for water, is the primary reason for the improvement in the activity of modified Ce0.98Pt0.02O2-d. Both the catalysts are 100?% selective toward H2 production, and approximately 99?% conversion of CO to CO2 was observed at 260 and 270 degrees C for Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d, respectively. These catalysts do not deactivate during the daily startup/shutdown operations and are sustainable even after prolonged reaction. Notably, these catalysts do not require any pretreatment or activation during startup/shutdown operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbod ihydrazide (L-1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant K-b of 4.5 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant K-b of 5.7 x 10(4) M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through O-1(2) generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation describes efforts to model biological active sites with small molecule clusters. The approach used took advantage of a multinucleating ligand to control the structure and nuclearity of the product complexes, allowing the study of many different homo- and heterometallic clusters. Chapter 2 describes the synthesis of the multinucleating hexapyridyl trialkoxy ligand used throughout this thesis and the synthesis of trinuclear first row transition metal complexes supported by this framework, with an emphasis on tricopper systems as models of biological multicopper oxidases. The magnetic susceptibility of these complexes were studied, and a linear relation was found between the Cu-O(alkoxide)-Cu angles and the antiferromagnetic coupling between copper centers. The triiron(II) and trizinc(II) complexes of the ligand were also isolated and structurally characterized.

Chapter 3 describes the synthesis of a series of heterometallic tetranuclear manganese dioxido complexes with various incorporated apical redox-inactive metal cations (M = Na+, Ca2+, Sr2+, Zn2+, Y3+). Chapter 4 presents the synthesis of heterometallic trimanganese(IV) tetraoxido complexes structurally related to the CaMn3 subsite of the oxygen-evolving complex (OEC) of Photosystem II. The reduction potentials of these complexes were studied, and it was found that each isostructural series displays a linear correlation between the reduction potentials and the Lewis acidities of the incorporated redox-inactive metals. The slopes of the plotted lines for both the dioxido and tetraoxido clusters are the same, suggesting a more general relationship between the electrochemical potentials of heterometallic manganese oxido clusters and their “spectator” cations. Additionally, these studies suggest that Ca2+ plays a role in modulating the redox potential of the OEC for water oxidation.

Chapter 5 presents studies of the effects of the redox-inactive metals on the reactivities of the heterometallic manganese complexes discussed in Chapters 3 and 4. Oxygen atom transfer from the clusters to phosphines is studied; although the reactivity is kinetically controlled in the tetraoxido clusters, the dioxido clusters with more Lewis acidic metal ions (Y3+ vs. Ca2+) appear to be more reactive. Investigations of hydrogen atom transfer and electron transfer rates are also discussed.

Appendix A describes the synthesis, and metallation reactions of a new dinucleating bis(N-heterocyclic carbene)ligand framework. Dicopper(I) and dicobalt(II) complexes of this ligand were prepared and structurally characterized. A dinickel(I) dichloride complex was synthesized, reduced, and found to activate carbon dioxide. Appendix B describes preliminary efforts to desymmetrize the manganese oxido clusters via functionalization of the basal multinucleating ligand used in the preceding sections of this dissertation. Finally, Appendix C presents some partially characterized side products and unexpected structures that were isolated throughout the course of these studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.

In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.

Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.

As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.

Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation describes studies on two multinucleating ligand architectures: the first scaffold was designed to support tricopper complexes, while the second platform was developed to support tri- and tetrametallic clusters.

In Chapter 2, the synthesis of yttrium (and lanthanide) complexes supported by a tripodal ligand framework designed to bind three copper centers in close proximity is described. Tricopper complexes were shown to react with dioxygen in a 1:1 [Cu3]/O2 stoichiometry to form intermediates in which the O–O bond was fully cleaved, as characterized via UV-Vis spectroscopy and determination of the reaction stoichiometry. Pre-arrangement of the three Cu centers was pivotal to cooperative O2 activation, as mono-copper complexes reacted differently with dioxgyen. The reactivity of the observed intermediates was studied with various substrates (reductants, O-atom acceptors, H-atom donors, Brønsted acids) to determine their properties. In Chapter 3, the reactivity of the same yttrium-tricopper complex with nitric oxide was explored. Reductive coupling to form a trans-hyponitrite complex (characterized by X-ray crystallography) was observed via cooperative reactivity by an yttrium and a copper center on two distinct tetrametallic units. The hyponitrite complex was observed to release nitrous oxide upon treatment with a Brønsted acid, supporting its viability as an intermediate in nitric oxide reduction to nitrous oxide.

In Chapter 4, a different multinucleating ligand scaffold was employed to synthesize heterometallic triiron clusters containing one oxide and one hydroxide bridges. The effects of the redox-inactive, Lewis acidic heterometals on redox potential was studied by cyclic voltammetry, unveiling a linear correlation between redox potential and heterometal Lewis acidity. Further studies on these complexes showed that the Lewis acidity of the redox-inactive metals also affected the oxygen-atom transfer reactivity of these clusters. Comparisons of this reactivity with manganese systems, collaborative efforts to reassign the structures of related manganese oxo-hydroxo clusters, and synthetic attempts to access related dioxo clusters are also described.

In Appendix A, ongoing efforts to synthesize new clusters supported by the same multinucleating ligand platform are described. Studies of novel approaches towards ligand exchange in tetrametallic clusters and incorporation of new supporting and bridging ligand motifs in trinuclear complexes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Raman-forbidden phonon mode at about 840 cm(-1) is observed popularly on the surface of pun and La-doped Bi2Sr2-xLaxCuO6+y (0 less than or equal to x less than or equal to 0.8) single crystals annealed in oxygen. A remarkable excitation dependence of this additional line is found. Based on the properties of the structure of the Bi-O layer with excess oxygen atoms and the similarity in the appearance of the Raman-forbidden modes between RBa2Cu3Ox (R = Y, Nd, Gd, Pr) and Bi2Sr2-xLaxCuO6+y systems, we attribute the manifestation of this additional line to the ordering of the interstitial oxygen in the Bi-O layers. Our results provide Raman evidences for confirming that the ordering of the movable oxygen may exist universally in high-temperature superconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of oxygen defects on the resistivity and mobility of silicon wafers is discussed. Grinding processes were performed on the surfaces of samples in order to obtain the information on interior defects of the samples. Spreading resistivity and Hall measurements prove that SiO(x) complexes alone result in resistivity increase and mobility decrease. Deep level transient spectroscopy experiments prove that SiO(x) complexes alone are electrically active. A mechanism of carrier scattering by electrically active SiO(x) complex is proposed to explain the changes of resistivity and mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of NO with CO in the presence of excess oxygen was investigated over different noble metal catalysts for probing the relationship between catalytic properties and adsorption behaviors. Among the four precious metal catalysts investigated, Ir/ZSM-5 was found to be the only active one for NO reduction with CO under lean conditions. With the decreasing of the Ir content, higher NO conversion and CO selectivity was obtained. Temperature-programmed reaction (TPR) studies of NO/H-2/O-2 and NO/CO/O-2 showed that the Pt/ZSM-5 was active when H-2 was used as the reductant, whereas, the Ir/ZSM-5 was active when CO was the reducing agent. This difference is due to the different mechanisms of the two reactions. Temperature-programmed desorption (TPD) of NO, CO and O-2 showed that NO could dissociate more easily over the Ir/ZSM-5 than on the Pt/ZSM-5, while the oxidation of CO by O-2 proceeded more rapidly on the Pt/ZSM-5 than on the Ir/ZSM-5. The presence of excess O-2 inhibited drastically the dissociation of NO, which is considered as the key step for the NO-CO reaction. The high dissociation rate of NO over the Ir/ZSM-5 is visualized as the key factor for its superior high activity in NO reduction with CO under lean conditions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active site structure for NO decomposition carried out on perovskite-like oxides were discussed based on the N-2 yield measured from LaSrNi1-x,AlxO4 with different B-site cations and from La2-ySryCuO4 with different crystal phases. Results show that the active site contains two oxygen vacancies, two transition metals, and one lattice-oxygen, with the oxygen vacancy locating on the apex of MO6 octahedron, and the lattice oxygen locating between the two transition metals (i.e., M-O-M plane). Density functional theory (DFT) analysis to the structure shows that this new active site is the most active structure for NO adsorbing, and hence, for NO decomposition. The similar trend of the relative energies that are required for the formation of oxygen vacancies with f form (calculated from DFT), the amount of oxygen vacancies, and the activities (N-2 yield) certifies this result further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly pure and active photosystem II (PSII) complex was isolated from Bangia fusco-purpurea (Dillw) Lyngb., an important economic red alga in China, through two steps of sucrose density gradient ultracentrifugation and characterized by the room absorption and fluorescence emission spectra, DCIP (2,6-dichloroindophenol) reduction, and oxygen evolution rates. The PSII complex from B. fusco-purpurea had the characteristic absorption peaks of chlorophyll (Chl) a (436 and 676 nm) and typical fluorescence emission peak at 685 nm (Ex = 436 nm). Moreover, the acquired PSII complex displayed high oxygen evolution (139 mu mol O-2/(mg Chl h) in the presence of 2.5 mM 2,6-dimethybenzoqinone as an artificial acceptor and was active in photoreduction of DCIP (2,6-dichloroindophenol) by DPC (1,5-diphenylcarbazide) at 163 U/(mg Chl a h). SDS-PAGE also suggested that the purified PSII complex contained four intrinsic proteins (D1, D2, CP43, and CP47) and four extrinsic proteins (33-kD protein, 20-kD protein, cyt c-550, and 14-kD protein).