462 resultados para Acrosomal Biogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of what we know about mitochondrial biogenesis stems from work in yeast and mammals, which are quite closely related. To understand the conserved features of mitochondria and the evolutionary forces that shaped it, it is important to study a more diverse group of eukaryotes. The parasitic protozoan Trypanosoma brucei and its relatives are excellent systems to do so, since they appear to have diverged from other eukaryotes very early in evolution. This is reflected in a number of unique and extreme features in their mitochondrial biology, including a single continuous mitochondrion that contains a one unit mitochondrial genome that is physically connected across the two membranes with the basal body of the flagellum. Moreover, many mitochondrial transcripts have to be extensively edited in order to become functional mRNAs and organellar translation requires extensive import of cytosolic tRNAs. In my talk I will focus on the discovery and characterization of the elusive mitochondrial protein import system of the mitochondrial outer membrane of trypanosomes. In addition I will present data on a central outer membrane component of the mitochondrial genome inheritance system of T. brucei and compare it to the better characterized system of yeast. - I hope that I can convince you in my talk, that a better understanding of the mitochondrial biology in T. brucei will provide insights into both fundamentally conserved and fundamentally diverged aspects of mitochondrial biogenesis and thus of the evolutionary history of mitochondria in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the unicellular parasite Trypanosoma brucei, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported from the cytosol. The recently characterized multisubunit ATOM complex, the functional analogue of the TOM complex of yeast, mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of outer mitochondrial membrane proteins including ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein import factor acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the mitochondrial DNA in T. brucei. It forms a physical connection between the single unit mitochondrial DNA and the basal body of the flagellum that is stable throughout the cell cycle. Thus, pATOM36 simultaneously mediates ATOM assembly, and thus protein import, as well as mitochondrial DNA inheritance since it is an essential component of the TAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs play roles in various biological processes like development, tumorigenesis, metastasis and pluripotency. My thesis work has demonstrated roles for p63, a p53 family member, in the upstream regulation of microRNA biogenesis. The p63 gene has a complex gene structure and has multiple isoforms. The TAp63 isoforms contain an acidic transcription activation domain. The ΔNp63 isoforms, lack the TA domain, but have a proline rich region critical for gene transactivation. To understand the functions of these isoforms, the Flores lab generated TAp63 and ΔNp63 conditional knock out mice. Using these mice and tissues and cells from these mice we have found that TAp63 transcriptionally regulates Dicer while ΔNp63 transcriptionally regulates DGCR8. TAp63 -/- mice are highly tumor prone. These mice develop metastatic mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas to distant sites including the liver, lungs, and brain. I found that TAp63 suppresses metastasis by transcriptionally activating Dicer. TAp63 and Dicer levels were very low or lost in high grade human tumors like mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas. Expression of Dicer in these tumor cell lines reduced their invasiveness. Using ΔNp63 -/- mice, I found that ΔNp63 transcriptionally activates DGCR8, resulting in a miRNA profile that is critical to reprogram cells to pluripotency. Analysis of epidermal cells derived from ΔNp63 -/- mice revealed that these cells expressed markers of pluripotency, including Sox2, Oct 4 and Nanog; however, genome-wide analysis revealed a novel profile of genes that are common between ΔNp63 -/- epidermal cells and embryonic stem cells. I also found that mouse cells depleted of ΔNp63 form chimeric mice and teratomas in SCID mice, demonstrating that ΔNp63 deficient cells are pluripotent. Further, I found that restoration of DGCR8 in ΔNp63 -/- epidermal cells reduces their pluripotency and induces terminal differentiation. I also demonstrated that iMS (induced multipotent stem) cells could be generated using human keratinocytes by knockdown of ∆Np63 or DGCR8. Taken together, my work has placed p63 and its isoforms at a critical node in controlling miRNA biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV pili of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Gonococcal PilT, a protein belonging to a large family of molecules sharing a highly conserved nucleotide binding domain motif, has been shown to be dispensable for organelle biogenesis but essential for twitching motility and competence for genetic transformation. Here, we show that the defect in pilus biogenesis resulting from mutations in the pilC gene, encoding a putative pilus-associated adhesin for human tissue, can be suppressed by the absence of functional PilT. These data conclusively demonstrate that PilT influences the Type IV pilus biogenesis pathway and strongly suggest that organelle expression is a dynamic process. In addition, these findings imply that PilT antagonizes the process of organelle biogenesis and provide the basis for a model for how the counteractive roles of PilT and PilC might relate mechanistically to the phenomenon of twitching motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates the translation of ribosomal protein (r-protein) mRNAs. In Saccharomyces cerevisiae, the TOR pathway similarly regulates general translational initiation, but its specific role in the synthesis of ribosomal components is not well understood. Here we demonstrate that in yeast control of ribosome biosynthesis by the TOR pathway is surprisingly complex. In addition to general effects on translational initiation, TOR exerts drastic control over r-protein gene transcription as well as the synthesis and subsequent processing of 35S precursor rRNA. We also find that TOR signaling is a prerequisite for the induction of r-protein gene transcription that occurs in response to improved nutrient conditions. This induction has been shown previously to involve both the Ras-adenylate cyclase as well as the fermentable growth medium–induced pathways, and our results therefore suggest that these three pathways may be intimately linked.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the cloning and characterization of Pichia pastoris PEX19 by complementation of a peroxisome-deficient mutant strain. Import of peroxisomal targeting signal 1- and 2-containing peroxisomal matrix proteins is defective in pex19 mutants. PEX19 encodes a hydrophilic 299-amino acid protein with sequence similarity to Saccharomyces cerevisiae Pex19p and human and Chinese hamster PxF, all farnesylated proteins, as well as hypothetical proteins from Caenorhabditis elegans and Schizosaccharomyces pombe. The farnesylation consensus is conserved in PpPex19p but dispensable for function and appears unmodified under the conditions tested. Pex19p localizes predominantly to the cytosolic fraction. Biochemical and two-hybrid analyses confirmed that Pex19p interacts with Pex3p, as seen in S. cerevisiae, but unexpectedly also with Pex10p. Two-hybrid analysis demonstrated that the amino-terminal 42 amino acids of Pex19p interact with the carboxyl-terminal 335 amino acids of Pex3p. In addition, the extreme carboxyl terminus of Pex19p (67 amino acids) is required for interaction with the amino-terminal 380 amino acids of Pex10p. Biochemical and immunofluorescence microscopy analyses of pex19Δ cells identified the membrane protein Pex3p in peroxisome remnants that were not previously observed in S. cerevisiae. These small vesicular and tubular (early) remnants are morphologically distinct from other Pppex mutant (late) remnants, suggesting that Pex19p functions at an early stage of peroxisome biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major routes of preprotein targeting into mitochondria are known. Preproteins carrying amino-terminal signals mainly use Tom20, the general import pore (GIP) complex and the Tim23–Tim17 complex. Preproteins with internal signals such as inner membrane carriers use Tom70, the GIP complex, and the special Tim pathway, involving small Tims of the intermembrane space and Tim22–Tim54 of the inner membrane. Little is known about the biogenesis and assembly of the Tim proteins of this carrier pathway. We report that import of the preprotein of Tim22 requires Tom20, although it uses the carrier Tim route. In contrast, the preprotein of Tim54 mainly uses Tom70, yet it follows the Tim23–Tim17 pathway. The positively charged amino-terminal region of Tim54 is required for membrane translocation but not for targeting to Tom70. In addition, we identify two novel homologues of the small Tim proteins and show that targeting of the small Tims follows a third new route where surface receptors are dispensable, yet Tom5 of the GIP complex is crucial. We conclude that the biogenesis of Tim proteins of the carrier pathway cannot be described by either one of the two major import routes, but involves new types of import pathways composed of various features of the hitherto known routes, including crossing over at the level of the GIP.