996 resultados para Acoela indeterminata, biomass as carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the High Nutrient Low Chlorophyll (HNLC) surrounding waters (October-November 2011, KEOPS 2). The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Comparison with the diatom assemblage composition of a sediment trap deployed in the iron-fertilized area suggests that the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant yet heavily silicified cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis. Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions: Grasslands are usually neglected as potential carbon stocks, partially due to the lack of studies on biomass and carbon dynamics in tropical grasslands. What is the importance of Brazilian tropical wet grasslands as carbon sinks? Does fire frequency and season affect biomass and carbon allocation in Brazilian wet grasslands? Location: Wet grasslands, tropical savanna, Jalapão, Tocantins, northern Brazil. Methods: We determined biomass above- and below-ground, estimated carbon stocks in biennially burned plots (B2) and plots excluded from fire for 4 yr (B4). Moreover, we determined biomass in both rainy and dry seasons. Samples were 0.25 m × 0.25 m × 0.2 m (eight samples per treatment, applying a nested design, total of 48 samples). The biomass was classified in above-ground graminoids, forbs and dead matter, and below-ground roots and other below-ground organs. We used ANOVA to compare variables between treatments and seasons. Results: More than 40% of the total biomass and carbon stocks were located below-ground, mostly in roots. A high proportion of dead biomass (B4) was found in the above-ground material, probably due to low decomposition rates and consequent accumulation over the years. Although these grasslands do not experience water stress, we found significant evidence of resource re-allocation from below-ground organs to the above-ground biomass in the rainy season. Conclusions: We found more dead biomass in the rainy season, probably due to low decomposition rates, which can increase fire risk in these grasslands during the following dry season. These tropical wet grasslands stored high amounts of carbon (621 to 716 g C.m-2), mostly in the roots. Thus, policymakers should consider tropical grasslands as potential carbon stocks, since they are one of the most threatened and unprotected ecosystems in Brazil. © 2012 International Association for Vegetation Science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate the stock of biomass and organic carbon in a montane mixed shade forest located near General Carneiro, PR. 20 plots of 12 m x 12 m were installed, in which all trees with a CBH (Circumference at Breast Height) >= 31.4 cm were felled. From these the following information was obtained: total height, commercial height (agreed as being the morphological inversion point in the natural forest and the height of the first live branch), CBH, identification and collection of herbarium specimens. For the quantification of biomass in the understory and roots, three subunits 1 m x 1 m in each sampling unit were installed (12 m x 12 m) arranged in the lower left corner, center and diagonal upper right corner. To quantify accumulated litter at random, eight samples in each sampling unit were collected (12 m x 12 m), using a metal device measuring 0.25 m x 0.25 m. The montane mixed shade forest has more than 85% of its total biomass and total organic carbon stored in above ground plant structures. The total stock of organic carbon found in this study (104.7 Mg ha(-1)) demonstrates the importance of maintaining and preserving natural ecosystems as a way of maintaining this stock of organic carbon fixed in plant biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madagascar is currently developing a policy and strategies to enhance the sustainable management of its natural resources, encouraged by United Nations Framework Convention on Climate Change (UNFCCC) and REDD. To set up a sustainable financing scheme methodologies have to be provided that estimate, prevent and mitigate leakage, develop national and regional baselines, and estimate carbon benefits. With this research study this challenge was tried to be addressed by analysing a lowland rainforest in the Analanjirofo region in the district of Soanierana Ivongo, North East of Madagascar. For two distinguished forest degradation stages: “low degraded forest” and “degraded forest” aboveground biomass and carbon stock was assessed. The corresponding rates of carbon within those two classes were calculated and linked to a multi-temporal set of SPOT satellite data acquired in 1991, 2004 and 2009. Deforestation and particularly degradation and the related carbon stock developments were analysed. With the assessed data for the 3 years 1991, 2004 and 2009 it was possible to model a baseline and to develop a forest prediction for 2020 for Analanjirofo region in the district of Soanierana Ivongo. These results, developed applying robust methods, may provide important spatial information regarding the priorities in planning and implementation of future REDD+ activities in the area.