999 resultados para Accumulation rate, terrigeneous


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 328 cm-long piston core (KODOS 02-01-02) collected from the northeast equatorial Pacific at 16°12'N, 125°59'W was investigated for eolian mass fluxes and grain sizes to test these proxies as a tool for the paleo-position of the Intertropical Convergence Zone (ITCZ). The eolian mass fluxes of the lower interval below 250 cm (15.5-7.6 Ma) are very uniform at 5 +/- 1 mg/cm**2/kyr, while those of the upper interval above 250 cm (from 7.6 Ma) are over 2 times higher than the lower interval at 12 +/- 1 mg/cm**2/kyr. The median grain size of the eolian dusts in the lower interval increases from 8.4 Phi to 8.0 Phi downward, while that of the upper interval varies in a narrow range from 8.8 Phi to 8.6 Phi. The determined values compare well in magnitude to those of central Pacific sediments for the upper interval and equatorial and southeast Pacific sediments for the lower interval. This result suggests a possibility that the study site had been under the influence of southeast trade winds at its earlier depositional period due to the northerly position of the ITCZ, and subsequently of the northeast trade winds for a later period when the upper sediments were deposited. This interpretation is consistent with a mineralogical and geochemical study published elsewhere that assigned the provenance of the study core dust to Central/South America for the lower interval and to Asia for the upper interval. This study suggests that the distinct differences in eolian mass flux and grain size observed across the ITCZ can be used to trace the paleo-latitude of the ITCZ.

Relevância:

100.00% 100.00%

Publicador: