912 resultados para Access control
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
Access control (AC) is a necessary defense against a large variety of security attacks on the resources of distributed enterprise applications. However, to be effective, AC in some application domains has to be fine-grain, support the use of application-specific factors in authorization decisions, as well as consistently and reliably enforce organization-wide authorization policies across enterprise applications. Because the existing middleware technologies do not provide a complete solution, application developers resort to embedding AC functionality in application systems. This coupling of AC functionality with application logic causes significant problems including tremendously difficult, costly and error prone development, integration, and overall ownership of application software. The way AC for application systems is engineered needs to be changed. In this dissertation, we propose an architectural approach for engineering AC mechanisms to address the above problems. First, we develop a framework for implementing the role-based access control (RBAC) model using AC mechanisms provided by CORBA Security. For those application domains where the granularity of CORBA controls and the expressiveness of RBAC model suffice, our framework addresses the stated problem. In the second and main part of our approach, we propose an architecture for an authorization service, RAD, to address the problem of controlling access to distributed application resources, when the granularity and support for complex policies by middleware AC mechanisms are inadequate. Applying this architecture, we developed a CORBA-based application authorization service (CAAS). Using CAAS, we studied the main properties of the architecture and showed how they can be substantiated by employing CORBA and Java technologies. Our approach enables a wide-ranging solution for controlling the resources of distributed enterprise applications.
Resumo:
Collaborative sharing of information is becoming much more needed technique to achieve complex goals in today's fast-paced tech-dominant world. Personal Health Record (PHR) system has become a popular research area for sharing patients informa- tion very quickly among health professionals. PHR systems store and process sensitive information, which should have proper security mechanisms to protect patients' private data. Thus, access control mechanisms of the PHR should be well-defined. Secondly, PHRs should be stored in encrypted form. Cryptographic schemes offering a more suitable solution for enforcing access policies based on user attributes are needed for this purpose. Attribute-based encryption can resolve these problems, we propose a patient-centric framework that protects PHRs against untrusted service providers and malicious users. In this framework, we have used Ciphertext Policy Attribute Based Encryption scheme as an efficient cryptographic technique, enhancing security and privacy of the system, as well as enabling access revocation. Patients can encrypt their PHRs and store them on untrusted storage servers. They also maintain full control over access to their PHR data by assigning attribute-based access control to selected data users, and revoking unauthorized users instantly. In order to evaluate our system, we implemented CP-ABE library and web services as part of our framework. We also developed an android application based on the framework that allows users to register into the system, encrypt their PHR data and upload to the server, and at the same time authorized users can download PHR data and decrypt it. Finally, we present experimental results and performance analysis. It shows that the deployment of the proposed system would be practical and can be applied into practice.
Resumo:
In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices.
Resumo:
In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: 1) if policies are complex, their enforcement can lead to performance decay of database servers; 2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.
Resumo:
In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: (1) if policies are complex, their enforcement can lead to performance decay of database servers; (2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the point-ofcare could possibly lead to a fatality. The U.S. Institute of Medicine has reported that between 44,000 and 98,000 people die each year due to medical errors, such as incorrect medication dosages, due to poor legibility in manual records, or delays in consolidating needed information to discern the proper intervention. In this research we propose employing emergent technologies such as Java SIM Cards (JSC), Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHR). A partial EHR contained within a JSC can be used at the point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Health Records Centre (EHRC) when time and network availability permit. Moreover, this framework and related protocols enable patients to give their explicit consent to a doctor to access their personal medical data, by using their Smart Phone, when the doctor needs to see or update the patient’s medical information during an examination. Also our proposed solution would give the power to patients to modify the Access Control List (ACL) related to their EHRs and view their EHRs through their Smart Phone. Currently, very limited research has been done on using JSCs and similar technologies as a portable repository of EHRs or on the specific security issues that are likely to arise when JSCs are used with ubiquitous access to EHRs. Previous research is concerned with using Medicare cards, a kind of Smart Card, as a repository of medical information at the patient point-of-care. However, this imposes some limitations on the patient’s emergency medical care, including the inability to detect the patient’s location, to call and send information to an emergency room automatically, and to interact with the patient in order to get consent. The aim of our framework and related protocols is to overcome these limitations by taking advantage of the SIM card and the technologies mentioned above. Briefly, our framework and related protocols will offer the full benefits of accessing an up-to-date, precise, and comprehensive medical history of a patient, whilst its mobility will provide ubiquitous access to medical and patient information everywhere it is needed. The objective of our framework and related protocols is to automate interactions between patients, healthcare providers and insurance organisations, increase patient safety, improve quality of care, and reduce the costs.
Resumo:
IEEE 802.11 based wireless local area networks (WLANs) are being increasingly deployed for soft real-time control applications. However, they do not provide quality-ofservice (QoS) differentiation to meet the requirements of periodic real-time traffic flows, a unique feature of real-time control systems. This problem becomes evident particularly when the network is under congested conditions. Addressing this problem, a media access control (MAC) scheme, QoS-dif, is proposed in this paper to enable QoS differentiation in IEEE 802.11 networks for different types of periodic real-time traffic flows. It extends the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) by introducing a QoS differentiation method to deal with different types of periodic traffic that have different QoS requirements for real-time control applications. The effectiveness of the proposed QoS-dif scheme is demonstrated through comparisons with the IEEE 802.11e EDCA mechanism.
Resumo:
Shared eHealth records systems offer promising benefits for improving healthcare through high availability of information and improved decision making; however, their uptake has been hindered by concerns over the privacy of patient information. To address these privacy concerns while balancing the requirements of healthcare professionals to have access to the information they need to provide appropriate care, the use of an Information Accountability Framework (IAF) has been proposed. For the IAF and so called Accountable-eHealth systems to become a reality, the framework must provide for a diverse range of users and use cases. The initial IAF model did not provide for more diverse use cases including the need for certain users to delegate access to another user in the system to act on their behalf while maintaining accountability. In this paper, we define the requirements for delegation of access in the IAF, how such access policies would be represented in the Framework, and implement and validate an expanded IAF model.
Resumo:
As one of the most widely used wireless network technologies, IEEE 802.11 wireless local area networks (WLANs) have found a dramatically increasing number of applications in soft real-time networked control systems (NCSs). To fulfill the real-time requirements in such NCSs, most of the bandwidth of the wireless networks need to be allocated to high-priority data for periodic measurements and control with deadline requirements. However, existing QoS-enabled 802.11 medium access control (MAC) protocols do not consider the deadline requirements explicitly, leading to unpredictable deadline performance of NCS networks. Consequentially, the soft real-time requirements of the periodic traffic may not be satisfied, particularly under congested network conditions. This paper makes two main contributions to address this problem in wireless NCSs. Firstly, a deadline-constrained MAC protocol with QoS differentiation is presented for IEEE 802.11 soft real-time NCSs. It handles periodic traffic by developing two specific mechanisms: a contention-sensitive backoff mechanism, and an intra-traffic-class QoS differentiation mechanism. Secondly, a theoretical model is established to describe the deadline-constrained MAC protocol and evaluate its performance of throughput, delay and packet-loss ratio in wireless NCSs. Numerical studies are conducted to validate the accuracy of the theoretical model and to demonstrate the effectiveness of the new MAC protocol.
Resumo:
A link level reliable multicast requires a channel access protocol to resolve the collision of feedback messages sent by multicast data receivers. Several deterministic media access control protocols have been proposed to attain high reliability, but with large delay. Besides, there are also protocols which can only give probabilistic guarantee about reliability, but have the least delay. In this paper, we propose a virtual token-based channel access and feedback protocol (VTCAF) for link level reliable multicasting. The VTCAF protocol introduces a virtual (implicit) token passing mechanism based on carrier sensing to avoid the collision between feedback messages. The delay performance is improved in VTCAF protocol by reducing the number of feedback messages. Besides, the VTCAF protocol is parametric in nature and can easily trade off reliability with the delay as per the requirement of the underlying application. Such a cross layer design approach would be useful for a variety of multicast applications which require reliable communication with different levels of reliability and delay performance. We have analyzed our protocol to evaluate various performance parameters at different packet loss rate and compared its performance with those of others. Our protocol has also been simulated using Castalia network simulator to evaluate the same performance parameters. Simulation and analytical results together show that the VTCAF protocol is able to considerably reduce average access delay while ensuring very high reliability at the same time.
Resumo:
[ES]En este documento se realiza el diseño de un procedimiento para la validación de los equipos necesarios a la hora de implantar un sistema de control de acceso mediante RFID pasivo. Para ello, se analizarán los distintos tipos de sistemas RFID y se elige uno para la posterior adquisición de los dispositivos necesarios. Se comprobará la normativa vigente ETSI, que regula las emisiones de potencia de los equipos de identificación por radiofrecuencia, y se verificará que se cumplen los requisitos necesarios para implantar el sistema de control de acceso realizando un análisis funcional en situaciones reales.
Resumo:
[ES]El proyecto está orientado a conseguir una comunicación inalámbrica y segura de una red de sensores IP. Por un lado, mediante el protocolo 6LoWPAN se consigue que los datos se transmitan mediante IPv6 y, por otro lado, gracias al protocolo LADON se establecen los servicios de seguridad de autenticación, integridad de datos, autorización y control de acceso.