760 resultados para ATTACKS
Resumo:
Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.
Resumo:
The reactions to the 9/11 terror attacks were immense in the western population. In the current review, the impact of terror attacks is presented with surveys, clinical interviews, and scientific polls, which were identified in a comprehensive literature search. Results show that the fear of further terror attacks is comparatively overestimated in the population and is associated with numerous psychological consequences and reactions. The overestimation of the probability of further terror attacks is related among other reasons to its unique features and its strong representation in the media. Several independent studies proved that the number of stress symptoms and psychiatric diagnoses is associated with a high risk perception in relation to terror attacks. This was not only the case for victims of terror attacks, but also for people indirectly exposed to the terror attacks. In addition, there is evidence that the number of the stress symptoms correlate with the duration of TV consumption of new findings about terror attempts. Methodologically, there is a critical lack of more in-depth analyses to explain the development of risk perceptions and its influence on mental and physical health. Because of the international importance and cross-cultural differences, an international standardization of research is desirable. [In German] Die Reaktionen auf die Terrorattentate vom 9. September 2001 in New York waren in der westlichen Bevölkerung immens. In der vorliegenden Übersichtsarbeit werden die Auswirkungen von Terrorattentaten durch Einbeziehung bevölkerungsrepräsentativer Untersuchungen, Surveys, klinischer Interviews und Einstellungsbefragungen dargestellt, die über eine deskriptive Literaturrecherche ermittelt wurden. Als Ergebnis des Reviews zeigt sich, dass die Angst vor weiteren Terrorattentaten in der Bevölkerung vergleichsweise hoch und mit zahlreichen psychologischen Folgen und Reaktionen assoziiert ist. Die Einschätzung der Auftretenswahrscheinlichkeit eines Terrorattentats hängt unter anderem mit den besonderen Charakteristika und der hohen medialen Präsenz des Themas zusammen. Die Anzahl der Stresssymptome bis hin zu psychiatrischen Diagnosen erwies sich in mehreren unabhängigen Untersuchungen mit einer hohen Risikowahrnehmung assoziiert. Dies ließ sich nicht nur bei den Opfern von Terrorattentaten, sondern auch bei indirekt Betroffenen zeigen. Darüber hinaus gibt es mehrfache Belege dafür, dass die Anzahl der Stresssymptome mit der Dauer des TV-Konsums über Neuigkeiten zu Terrorattentaten zusammenhing. Als methodische Kritik ist an den gegenwärtigen Untersuchungsszenarien einzuwenden, dass es derzeit keine tiefer gehenden Analysen zur Entwicklung der Risikowahrnehmung und zu ihrem Einfluss auf die Gesundheit gibt. Aufgrund der internationalen Bedeutung des Themas und der interkulturellen Unterschiede im Umgang mit Krisensituationen ist eine internationale Standardisierung von Untersuchungszugängen wünschenswert.
Resumo:
This paper investigates cyber attacks on ICS which rely on IEC 60870-5-104 for telecontrol communications. The main focus of the paper is on man-in-the-middle attacks, covering modification and injection of commands, it also details capture and replay attacks. An initial set of attacks are preformed on a local software simulated laboratory. Final experiments and validation of a man-in-the-middle attack are performed in a comprehensive testbed environment in conjunction with an electricity distribution operator.
Resumo:
Side-channel analysis of cryptographic systems can allow for the recovery of secret information by an adversary even where the underlying algorithms have been shown to be provably secure. This is achieved by exploiting the unintentional leakages inherent in the underlying implementation of the algorithm in software or hardware. Within this field of research, a class of attacks known as profiling attacks, or more specifically as used here template attacks, have been shown to be extremely efficient at extracting secret keys. Template attacks assume a strong adversarial model, in that an attacker has an identical device with which to profile the power consumption of various operations. This can then be used to efficiently attack the target device. Inherent in this assumption is that the power consumption across the devices under test is somewhat similar. This central tenet of the attack is largely unexplored in the literature with the research community generally performing the profiling stage on the same device as being attacked. This is beneficial for evaluation or penetration testing as it is essentially the best case scenario for an attacker where the model built during the profiling stage matches exactly that of the target device, however it is not necessarily a reflection on how the attack will work in reality. In this work, a large scale evaluation of this assumption is performed, comparing the key recovery performance across 20 identical smart-cards when performing a profiling attack.
Resumo:
Cyber-attacks against Smart Grids have been found in the real world. Malware such as Havex and BlackEnergy have been found targeting industrial control systems (ICS) and researchers have shown that cyber-attacks can exploit vulnerabilities in widely used Smart Grid communication standards. This paper addresses a deep investigation of attacks against the manufacturing message specification of IEC 61850, which is expected to become one of the most widely used communication services in Smart Grids. We investigate how an attacker can build a custom tool to execute man-in-the-middle attacks, manipulate data, and affect the physical system. Attack capabilities are demonstrated based on NESCOR scenarios to make it possible to thoroughly test these scenarios in a real system. The goal is to help understand the potential for such attacks, and to aid the development and testing of cyber security solutions. An attack use-case is presented that focuses on the standard for power utility automation, IEC 61850 in the context of inverter-based distributed energy resource devices; especially photovoltaic (PV) generators.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
During the last 30 years governments almost everywhere in the world are furthering a global neoliberal agenda by withdrawing the state from the delivery of services, decreasing social spending and lowering corporate taxation etc. This restructuring has led to a massive transfer of wealth from the welfare state and working class people into capital. In order to legitimize this restructuring conservative governments engage in collective blaming towards their denizens. This presentation will examine some of the well circulated phrases that have been used by the dominant elite in some countries during the last year to legitimize the imposition of austerity measures. Phrases such as, ‘We all partied’ used by the Irish finance minister, Brian Lenihan, to explain the Irish crisis and collectively blame all Irish people, ‘We must all share the pain’, deployed by another Irish Minister Gilmore and the UK coalition administration’s sound bite ‘We are all in this together’, legitimize the imposition of austerity measures. Utilizing the Gramscian concept of common sense (Gramsci, 1971), I call these phrases ‘austerity common sense’. They are austerity common sense because they both reflect and legitimate the austerity agenda. By deploying these phrases, the ruling economic and political elite seek to influence the perception of the people and pre-empt any intention of resistance. The dominant theme of these phrases is that there is no alternative and that austerity measures are somehow self-inflicted and, as such, should not be challenged because we are all to blame. The purpose of this presentation is to explore the “austerity common sense” theme from a Gramscian approach, focus on its implications for the social work profession and discuss the ways to resist the imposition of the global neoliberal agenda.