933 resultados para AT(2) RECEPTOR
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
BACKGROUND: The vasoconstricting peptide endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, vascular smooth muscle cell (VSMC) growth stimulation, and intimal thickening. ET-1 binds 2 receptor subtypes, endothelin A and B, and the ETA receptor mediates vasoconstriction and VSMC growth. This study aims to quantitatively assess arterial remodeling variables and compare them with changes in ET-1, ETA, and ETB expression in the internal mammary artery (IMA). METHODS AND RESULTS: Specimens from 55 coronary artery disease (CAD) patients (45 men, 10 women; mean age 65 years) and 14 control IMA specimens (from 7 men and 7 women; mean age 45 years) were collected. IMA cross sections were assessed by histochemical and immunohistochemical staining methods to quantify the levels of medionecrosis, fibrosis, VSMC growth, ET-1, ETA, ETB, and macrophage infiltration. The percentage area of medionecrosis in the patients was almost double that in the controls (31.85+/-14.52% versus 17.10+/-9.96%, P=0.0006). Total and type 1 collagen was significantly increased compared with controls (65.8+/-18.3% versus 33.7+/-13.7%, P=0.07, and 14.2+/-10.0% versus 4.8+/-2.8%, P=0.01, respectively). Despite ACE and/or statin therapy, ET-1 expression and cell cycling were significantly elevated in the patient IMAs relative to the controls (46.27+/-18.46 versus 8.56+/-8.42, P=0.0001, and 37.29+/-12.88 versus 11.06+/-8.18, P=0.0001, respectively). ETA and ETB staining was elevated in the patient vessels (46.88+/-11.52% versus 18.58+/-7.65%, P=0.0001, and 42.98+/-7.08% versus 34.73+/-5.20%, P=0.0067, respectively). A mild presence of macrophages was noted in all sections. CONCLUSIONS: Elevated distribution of collagen indicative of fibrosis coupled with increased cell cycling and high levels of ET-1 and ETA expression in the absence of chronic inflammation suggests altered IMA VSMC regulation is fundamental to the remodeling process.
Resumo:
Accumulating evidence show that kinins, notably bradykinin (BK) and kallidin, have cardioprotective effects. To these include reduction of left ventricular hypertrophy (LVH) and progression of heart failure. The effects are mediated through two G protein-coupled receptors- bradykinin type-2 receptor (BK-2R) and bradykinin type -1 receptor (BK-1R). The widely accepted cardioprotective effects of BK-receptors relate to triggering the production and release of vasodilating nitric oxide (NO) by endothelial cells. They also exert anti-proliferative effects on fibroblasts and anti-hypertrophic effects on myocytes, and thus may play an essential role in the cardioprotective response to myocardial injury. The role for BK-1Rs in HF is based on experimental animal models, where the receptors have been linked to cardioprotective- but also to cardiotoxic -effects. The BK-1Rs are induced under inflammatory and ischemic conditions, shown in animal models; no previous reports, concerning BK-1Rs in human heart failure, have been presented. The expression of BK-2Rs is down-regulated in human end-stage heart failure. Present results showed that, in these patients, the BK-1Rs were up-regulated, suggesting that also BK-1Rs are involved in the pathogenesis of human heart failure. The receptors were localized mainly in the endothelium of intramyocardial coronary vessels, and correlated with the increased TNF-α expression in the myocardial coronary vessels. Moreover, in cultured endothelial cells, TNF-α was a potent trigger of BK-1Rs. These results suggest that cytokines may be responsible for the up-regulation of BK-1Rs in human heart failure. A linear relationship between BK-2R mRNA and protein expression in normal and failing human left ventricles implies that the BK-2Rs are regulated on the transcriptional level, at least in human myocardium. The expression of BK-2Rs correlated positively with age in normal and dilated hearts (IDC). The results suggest that human hearts adapts to age-related changes, by up-regulating the expression of cardioprotective BK-2Rs. Also, in the BK-2R promoter polymorphism -58 T/C, the C-allele was accumulated in cardiomyopathy patients which may partially explain the reduced number of BK-2Rs. Statins reduce the level of plasma cholesterol, but also exert several non-cholesterol-dependent effects. These effects were studied in human coronary arterial endothelial cells (hCAEC) and incubation with lovastatin induced both BK-1 and BK-2Rs in a time and concentration-dependent way. The induced BK-2Rs were functionally active, thus NO production and cGMP signaling was increased. Induction was abrogated by mevalonate, a direct HMG-CoA metabolite. Lovastatin is known to inhibit Rho activation, and by a selective RhoA kinase inhibitor (Y27632), a similar induction of BK-2R expression as with lovastatin. Interestingly a COX-2-inhibitor (NS398) inhibited this lovastatin-induction of BK-2Rs, suggesting that COX-2 inhibitors may affect the endothelial BK-2Rs, in a negative fashion. Hypoxia is a common denominator in HF but also in other cardiovascular diseases. An induction of BK-2Rs in mild hypoxic conditions was shown in cultured hCAECs, which was abolished by a specific BK-2R inhibitor Icatibant. These receptors were functionally active, thus BK increased and Icatibant inhibited the production of NO. In rat myocardium the expression of BK-2R was increased in the endothelium of vessels, forming at the border zone, between the scar tissue and the healthy myocardium. Moreover, in in vitro wound-healing assay, endothelial cells were cultured under hypoxic conditions and BK significantly increased the migration of these cells and as Icatibant inhibited it. These results show, that mild hypoxia triggers a temporal expression of functionally active BK-2Rs in human and rat endothelial cells, supporting a role for BK-2Rs, in hypoxia induced angiogenesis. Our and previous results show, that BK-Rs have an impact on the cardiovascular diseases. In humans, at the end stage of heart failure, the BK-2Rs are down-regulated and BK-1Rs induced. Whether the up-regulation of BK-1Rs, is a compensatory mechanism against the down-regulation of BK-2Rs, or merely reflects the end point of heart failure, remains to bee seen. In a clinical point of view, the up-regulation of BK-2Rs, under hypoxic conditions or statin treatment, suggests that, the induction of BK-2Rs is protective in cardiovascular pathologies and those treatments activating BK-2Rs, might give additional tools in treating heart failure.
Resumo:
The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4 T-lymphocytes and suppress the cytolytic effector function of CD8 T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8 T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor (IL-2R) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RTPCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2R (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8 T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4 T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.
Resumo:
Introduction: Antipsychotic drugs date back to the 1950s and chlorpromazine. Soon after, it was established that blockade of dopamine and, in particular, the D-2 receptor was central to this effect. Dopamine continues to represent a critical line of investigation, although much of the work now focuses on its potential in other symptom domains. Areas covered: A search was carried out for investigational drugs using the key words `dopamine', `schizophrenia' and `Phase III' in an American clinical trial registry (clinicaltrials.gov), published articles using the National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. Drugs were excluded that were already FDA approved. Expert opinion: There remains interest, albeit diminished, in developing better antipsychotic compounds. The greatest enthusiasm currently centres on dopamine's role in negative and cognitive symptom domains. With theories conceptualising hypodopaminergic activity as underlying these deficits, considerable effort is focused on drug strategies that will enhance dopamine activity. Finally, a small body of research is investigating dopaminergic compounds vis-a-vis side-effect treatments. In domains beyond psychosis, however, dopamine arguably is not seen as so central, reflected in considerable research following other lines of investigation.
Resumo:
The GABAB receptor has been postulated as a possible drug target in the treatment of anxiety disorders and cocaine addiction. Indeed, a wealth of preclinical data is emerging that has shown that mice lacking functional GABAB receptors display a highly anxious behaviour across a range of behavioural models of anxiety. Additionally, novel compounds that act by altering the allosteric conformation of the GABAB receptor to a more active state; the GABAB receptor positive modulators, have been repeatedly demonstrated to have anxiolytic effects in animals. In addition to being a putative anxiolytic drug target, the GABAB receptor has been identified as a novel target for antiaddictive therapies. Indeed GABAB receptor positive modulators have been demonstrated to have anti-addictive properties across a broad variety of behavioural paradigms. Despite these findings, several gaps in our knowledge of the role played by the GABAB receptor in both anxiety and drug abuse disorder exist. The aim of this thesis was to use preclinical animal models in an effort to further probe the role played by the GABAB receptor in anxiety and addiction. Our studies initially examined the role played by the GABAB receptor in the neurodevelopmental processes underpinning of anxiety. Our studies demonstrated that treating mouse pups in early life with the GABAB receptor agonist baclofen produced an anxious phenotype in adult life, whereas treatment with the GABAB receptor antagonist CGP52432 produced no effects on adult behaviour. Further to this, we examined whether the anxious behaviour induced by early life blockade of the serotonin reuptake transporter was dependant on alterations in GABAB receptor function. Our studies however revealed no effect of early life selective serotonin reuptake inhibitor treatment on adult life baclofen sensitivity. The next issue addressed in this thesis is the characterization of the effects of a GABAB receptor positive modulator and a GABAB receptor antagonist in a behavioural model of conditioned fear behaviour. These novel classes of GABAB receptor ligands have been considerably less well characterized in this facet of preclinical anxiety behaviour than in terms of innate anxiety behaviour. Our study however revealed that the GABAB receptor positive modulator GS39783 and the GABAB receptor antagonist CGP52432 were without effect on the acquisition, expression or extinction of conditioned fear in our model. The next element of this thesis dealt with the characterization of a novel mouse model, the GABAB(2)- S892A mouse. This mouse has been engineered to express a form of the GABAB(2) receptor subunit wherein the function determining serine phosphorylation site cannot be phosphorylated. We initially tested this mouse in terms of its GABAB receptor function in adult life, followed by testing it in a battery of tests of unconditioned and learned anxiety behaviour. We also examined the behavioural and molecular responses of the GABAB(2)-S892A mouse to cocaine. All of our studies appear to show that the GABAB(2)-S892A mouse is indistinguishable from wildtype controls. The final aim of the thesis was to investigate the behavioural and molecular sensitivity of the GABAB(1) subunit isoform null mice, the GABAB(1a) -/- and GABAB(1b) -/- mice to cocaine. Our studies revealed that these mice display differing behavioural responses to cocaine, with the GABAB(1a) -/- mouse displaying a hypersensitivity to the acute locomotor effects of cocaine, while the GABAB(1b) -/- displayed blunted locomotor sensitisation to cocaine.
Resumo:
Transgenic overexpression (40- to 100-fold) of the wild-type human beta2-adrenergic receptor in the hearts of mice leads to a marked increase in cardiac contractility, which is apparently due to the low level of spontaneous (i.e., agonist-independent) activity inherent in the receptor. Here we report that transgenic mice expressing a mutated constitutively active form of the receptor (CAM) show no such phenotype, owing to its modest expression (3-fold above endogenous cardiac beta-adrenergic receptor levels). Surprisingly, treatment of the animals with a variety of beta-adrenergic receptor ligands leads to a 50-fold increase in CAM beta2-adrenergic receptor expression, by stabilizing the CAM beta2-adrenergic receptor protein. Receptor up-regulation leads in turn to marked increases in adenylate cyclase activity, atrial tension determined in vitro, and indices of cardiac contractility determined in vivo. These results illustrate a novel mechanism for regulating physiological responses, i.e., ligand-induced stabilization of a constitutively active but inherently unstable protein.
Resumo:
During many chronic infections virus-specific CD8 T cells succumb to exhaustion as they lose their ability to respond to antigenic activation. Combinations of IL-12, IL-18, and IL-21 have been shown to induce the antigen-independent production of interferon (IFN)-γ by effector and memory CD8 T cells. In this study we investigated whether exhausted CD8 T cells are sensitive to activation by these cytokines. We show that effector and memory, but not exhausted, CD8 T cells produce IFN-γ and upregulate CD25 following exposure to certain combinations of IL-12, IL-18, and IL-21. The unresponsiveness of exhausted CD8 T cells is associated with downregulation of the IL-18-receptor-α (IL-18Rα). Although IL-18Rα expression is connected with the ability of memory CD8 T cells to self-renew and efflux rhodamine 123, the IL-18Rα(lo) exhausted cells remained capable of secreting this dye. To further evaluate the consequences of IL-18Rα downregulation, we tracked the fate of IL-18Rα-deficient CD8 T cells in chronically infected mixed bone marrow chimeras and discovered that IL-18Rα affects the initial but not later phases of the response. The antigen-independent responsiveness of exhausted CD8 T cells was also investigated following co-infection with Listeria monocytogenes, which induces the expression of IL-12 and IL-18. Although IL-18Rα(hi) memory cells upregulated CD25 and produced IFN-γ, the IL-18Rα(lo) exhausted cells failed to respond. Collectively, these findings indicate that as exhausted T cells adjust to the chronically infected environment, they lose their susceptibility to antigen-independent activation by cytokines, which compromises their ability to detect bacterial co-infections.
Resumo:
Dissertação de Mestrado, Biotecnologia, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2009
Resumo:
Le récepteur de la vasopressine de type 2 (V2R) joue un rôle crucial dans l’homéostasie hydrique. Exprimé principalement au niveau du rein, son activation par l’hormone antidiurétique arginine-vasopressine (AVP) favorise la réabsorption d’eau, participant ainsi à diminuer la diurèse. Plus de 200 mutations dans le gène du V2R ont été associées au diabète néphrogénique insipide congénital (DINc), une maladie causée par une perte de fonction du récepteur. À l’opposé, trois mutations découvertes récemment induisent un gain de fonction du V2R, et sont la cause du syndrome néphrogénique de l’anti-diurèse inappropriée (NSIAD). Les travaux de cette thèse visent à mieux comprendre les bases moléculaires responsables de la perte ou du gain de fonction des récepteurs mutants associés à ces deux maladies. Dans plus de 50% des cas, les mutations faux-sens affectent négativement l’adoption d’une conformation native par le V2R, provoquant la reconnaissance et la rétention intracellulaire des mutants par le système de contrôle de qualité du réticulum endoplasmique. Nos résultats ont démontré que l’interaction entre les récepteurs mutants et le chaperon moléculaire calnexine est dépendante de N-glycosylation et que sa durée varie en fonction de la mutation. De plus, l’importance de cette modification co-traductionnelle et des interactions lectines-sucres dans le processus de maturation d’un mutant donné s’est avérée une caractéristique intrinsèque, puisque l’absence de N-glycosylation n’a pas affecté le mutant Y128S (phénotype léger) tandis que la maturation du mutant W164S (phénotype sévère) a été totalement abolie. Nos résultats suggèrent aussi que l’action des chaperons pharmacologiques (CP), molécules favorisant la maturation des mutants du V2R, peut survenir à différentes étapes au cours du processus de maturation, selon le mutant réchappé. Ces différences entre muta nts suggèrent des processus biosynthétiques ‘personnalisés’ dictés par la nature de la mutation impliquée et pourraient expliquer la différence de sévérité des manifestations cliniques chez les patients porteurs de ces mutations. Bien qu’une récupération de fonction ait été obtenue pour les mutants Y128S et W164S par un traitement au CP, il n’en est pas de même pour toutes les mutations occasionnant un défaut conformationnel. C’est ce que nous avons démontré pour le mutant V88M, affligé de deux défauts, soit une faible efficacité de maturation combinée à une basse affinité pour l’AVP. Dans ce cas, et malgré une augmentation du nombre de récepteurs mutants la surface cellulaire, la diminution de l’affinité apparente du récepteur mutant pour l’AVP a été exacerbée par la présence résiduelle de CP à son site de liaison, rendant impossible l’activation du récepteur aux concentrations physiologiques d’AVP. Les mutants R137C et R137L ont une activité constitutive élevée et mènent au NSIAD tandis que la substitution de cette même arginine par une histidine (R137H) mène au DINc. Ces trois mutants se sont avéré partager plusieurs caractéristiques, dont une efficacité de maturation réduite et une désensibilisation spontanée élevée. La seule différence iden tifiée entre ces mutants est leur niveau d’activité constitutive. Le CP utilisé dans nos études possède aussi la propriété d’agoniste inverse, mais n’a pourtant pas diminué l’activité constitutive des mutants R137C/L, suggérant une conformation active ‘figée’. Seul l’effet chaperon a été observé, entraînant la hausse de récepteurs à la surface cellulaire, qui se traduit par une augmentation de la production de second messager. Nous avons par contre suggéré l’utilisation d’AVP puisqu’il favorise l’endocytose des récepteurs R137/L sans promouvoir leur activation, diminuant ainsi le nombre de récepteurs actifs à la surface cellulaire. Nous avons identifié la première mutation occasionnant un gain de fonction du V2R qui n’implique pas l’arginine 137. Le mutant F229V a une activité constitutive élevée et, contrairement aux R137C et R137L, il n’est pas sujet à une désensibilisation spontanée accrue. L’observation que des agonistes inverses sont aptes à inhiber l’activité constitutive de ce nouveau mutant est une découverte importante puisque l’insuccès obtenu avec les mutations précédentes suggérait que ces molécules n’étaient pas utiles pour le traitement du NSIAD. Considérés globalement, ces travaux illustrent le caractère particulier des formes mutantes du V2R et l’importance de bien cerner les conséquences fonctionnelles des mutations afin d’apporter aux patients atteints de DINc ou NSIAD une thérapie personnalisée, et de développer de nouveaux agents thérapeutiques adaptés aux besoins.
Resumo:
The clonal expansion of antigen-specific CD8+ T cells in response to microbial infections is essential for adaptive immunity. Although IL-2 has been considered to be primarily responsible for this process, quantitatively normal expansion occurs in the absence of IL-2 receptor signaling. Here, we show that ligating CD27 on CD8+ T cells that have been stimulated through the T cell receptor causes their expansion in the absence of IL-2 by mediating two distinct cellular processes: enhancing cell cycling and promoting cell survival by maintaining the expression of IL-7 receptor alpha. This pathway for clonal expansion of the CD8+ T cell is not associated with the development of a capacity either for production of IFN-gamma or for cytotoxic T lymphocyte function and, therefore, is uncoupled from differentiation. Furthermore, ligating CD27 increases the threshold concentration at which IL-2 induces IFN-gamma-producing capability by the CD8+ T cell, suggesting that CD27 signaling may suppress effector differentiation. Finally, CD8+ T cells that have been stimulated by the TCR/CD27 pathway maintain their capacity for subsequent expansion and effector differentiation in response to a viral challenge in vivo. Thus, the TCR/CD27 pathway enables the CD8+ T cell to replicate by a process of self-renewal, which may contribute to the continuous generation of new effector CD8+ T cells in persistent viral infections.
Resumo:
In previous studies, we have shown that agonists influence the ability of D-2 dopamine receptors to couple to G proteins and here we extend this work. The human D-2Short dopamine receptor and a natural polymorphism of this D-2Short(Ser(311)Cys), have been studied by co-expressing the receptors in insect cells with Gbeta(1)gamma(2) and either Galpha(o), Galpha(i1), Galpha(i2) or Galpha(i3) G protein subunits. These preparations have been used to study the G protein coupling profiles of the two receptors and the influence of agonists. Receptor/G protein coupling was analysed in dopamine/[H-3]spiperone competition binding experiments and through stimulation of [S-35]GTPgammaS binding. Although the Ser(311)Cys polymorphism itself had no appreciable effect on the G protein coupling specificity of the D-2 receptor, agonist stimulation of [S-35]GTPgammaS binding, revealed that both dopamine and (+)-3PPP showed a clear preference for Galpha(o) compared to the Galpha(i) subtypes, but quinpirole did not. These results indicate that agonists are able to stabilise different receptor conformations with different abilities to couple to G proteins. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Human D-2Long (D-2L) and D-2Short (D-2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [H-3] Spiperone labelled D-2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D-2L or D-2S receptors, with a pK(d) value of approximate to 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D-2L and D-2S receptors in Sf9 cells. When the FLAG-tagged D-2S and HIV-tagged D-2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D-2 receptors. In both cases, constitutive homo-oligomers were revealed for D-2L and D-2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D-2S receptors. The D-2 receptor ligands dopamine, R-(-) propylnorapomorphine, and raclopride did not affect oligomerization of D-2L and D-2S in Sf9 and HEK293 cells. Human D-2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D-2 oligomerization in these cells is not regulated by ligands.
Resumo:
Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.