896 resultados para ASSISTED GALVANIC REDUCTIONS
Resumo:
The galvanic replacement of isolated nanostructures of copper and silver on conducting supports as well as continuous films of copper with gold is reported. The surface morphology was characterized by scanning electron microscopy and the replacement with gold was confirmed by EDX analysis. It was found that lateral charge propagation during the replacement reaction had a significant effect in all cases. For the isolated nanostructures the deposition of gold was observed not only at the sacrificial template but also at the surrounding unmodified areas of the conducting substrate. In the case of copper films the role of lateral charge propagation was also confirmed by connecting it to an ITO electrode through an external circuit upon which gold deposition was also observed to occur. Interestingly, by inhibiting the rate of charge propagation, through the introduction of a series resistor, the morphology of gold on the copper substrate could be changed from discrete surface decoration with cube like nanoparticles to a more porous rough surface.
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.
Resumo:
Although some research suggests that dog-assisted therapy may be beneficial for people with dementia living in residential aged care facilities, the intervention has not been adequately investigated. To address this shortcoming, we conducted a randomized controlled trial of dog-assisted therapy versus a human-therapist-only intervention for this population. Fifty-five residents with mild to moderate dementia living in three Australian residential aged care facilities completed an 11-week trial of the interventions. Allocation to the intervention was random and participants completed validated measures of mood, psychosocial functioning, and quality of life (QOL), both prior to and following the intervention. No adverse events were associated with the dog-assisted intervention, and following it participants who had worse baseline depression scores demonstrated significantly improved depression scores relative to participants in the human-therapist-only intervention. Participants in the dogassisted intervention also showed significant improvements on a measure of QOL in one facility compared with those in the human-therapist-only group (although worse in another facility that had been affected by an outbreak of gastroenteritis). This study provides some evidence that dog-assisted therapy may be beneficial for some residents of aged care facilities with dementia.
Resumo:
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.
Resumo:
UK High Court decision - application for declarations legitimising third party assistance in voluntary termination of life - facts - moral, social and ethical issues - analysis.
Resumo:
Universities no longer equip graduates solely with the content knowledge of their discipline, but also with prospective employment skills. Professions also seek graduates who can ‘collaborate, share skills and knowledge, and communicate their ideas effectively’ (Kruck and Reif, 2001, p 37). However, as admission to university does not always guarantee that one is well equipped for the task, first year students also need guidance in the development of academic skills. This session describes two models of peer assisted learning embedded within the Torts and Legal Foundations B units at the Faculty of Law, Queensland University of Technology, and how they are used to supplement student understanding of substantive law with the development of academic and work-related skills. Student perceptions of the programs developed are considered, together with the challenges faced. Session participants will be asked to contribute to a discussion of these challenges and to offer ideas on their redress.
Resumo:
In recent years Australian Law Schools have implemented various forms of peer assisted learning or mentoring, including career mentoring by former students of final year students and orientation mentoring or tutoring by later year students of incoming first year students. The focus of these programs therefore is on the transition into or out of law school. There is not always as great an emphasis however, as part of this transition, on the use of law students belonging to the same unit cohort as a learning resource for each other within their degree. This is despite the claimed preference of Generation Y students for collaborative learning environments, authentic learning experiences and the development of marketable workplace skills. In the workplace, be it professional legal practice or otherwise, colleagues rely heavily on each other for information, support and guidance. In the undergraduate law degree at the Queensland University of Technology (‘QUT’) the Torts Student Peer Mentor Program aims to supplement a student’s understanding of the substantive law of torts with the development of life-long skills. As such it has the primary objective, albeit through discussion facilitated by more senior students, of encouraging first year students to develop for themselves the skills they need to be successful both as law students and as legal practitioners. Examples of such skills include those relevant to: preparation for assessment tasks; group work; problem solving, cognition and critical thinking; independent learning; and communication. Significantly, in this way, not only do the mentees benefit from involvement in the program, but the peer mentors, or program facilitators, themselves also benefit from their participation in the real world learning environment the program provides. This paper outlines the development and implementation of the above program, the pedagogy which influenced it, and its impact on student learning experiences
Resumo:
Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5-15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.
Resumo:
Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.
Resumo:
Growth kinetics of carbon nanofibers in a hydrocarbon plasma is studied. In addition to gas-phase and surface processes common to chemical vapor deposition, the model includes (unique to plasma-exposed catalyst surfaces) ion-induced dissociation of hydrocarbons, interaction of adsorbed species with incoming hydrogen atoms, and dissociation of hydrocarbon ions. It is shown that at low, nanodevice-friendly process temperatures the nanofibers grow via surface diffusion of carbon adatoms produced on the catalyst particle via ion-induced dissociation of a hydrocarbon precursor. These results explain a lower activation energy of nanofiber growth in a plasma and can be used for the synthesis of other nanoassemblies. © 2007 American Institute of Physics.
Resumo:
Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.
Resumo:
A mechanism and model for the vertical growth of platelet-structured vertically aligned single-crystalline carbon nanostructures by the formation of graphene layers on a flat top surface are proposed and verified experimentally. It is demonstrated that plasma-related effects lead to self-sharpening of tapered nanocones to form needlelike nanostructures, in a good agreement with the predicted dependence of the radius of a nanocone's flat top on the incoming ion flux and surface temperature. The growth mechanism is relevant to a broad class of nanostructures including nanotips, nanoneedles, and nanowires and can be used to improve the predictability of nanofabrication processes. © 2007 American Institute of Physics.
Resumo:
An effective technique to improve the precision and throughput of energetic ion condensation through dielectric nanoporous templates and reduce nanopore clogging by using finely tuned pulsed bias is proposed. Multiscale numerical simulations of ion deposition show the possibility of controlling the dynamic charge balance on the upper template's surface to minimize ion deposition on nanopore sidewalls and to deposit ions selectively on the substrate surface in contact with the pore opening. In this way, the shapes of nanodots in template-assisted nanoarray fabrication can be effectively controlled. The results are applicable to various processes involving porous dielectric nanomaterials and dense nanoarrays.
Resumo:
An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.