915 resultados para AQUEOUS SOLUBILIZATION
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.
Resumo:
The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.
Resumo:
In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.
Resumo:
The products of corrosion reaction of electrolytic iron in 45% ammonium nitrate solution formed under various conditions of time, temperature and pH have been analysed mainly by Mössbauer spectroscopy, in combination with X-ray diffraction, infrared absorption and electron microscopy techniques. γ-Fe00H is found to be the major product of hydrolytic precipitation at pH > 5.6 while only α-FeOOH is formed at pH < 3.0. In the pH range 3.0 < pH < 5.0, α-Fe00H and ferrihydrite are both formed. However, once the nuclei of α-Fe00H are formed under low pH conditions, their growth is favoured even in the otherwise unfavourable slightly acidic medium, resulting in a hydrous α-Fe00H which has two distinct hyperfine fields at the 57Fe nucleus. Magnetite is always formed in the vicinity of the metal and its rate of formation on the surface increases with temperature. α-Fe203 is the major product of hydrolytic precipitation at temperatures >80C. The possible mechanisms for the formation of each of the corrosion products are discussed.
Resumo:
The photochemical and photophysical processes of many organic compounds are a function of the environment in which they are present. In this connection we have chosen to investigate the environmental perturbations on the photodimerization of coumarin,l and the results of our study in aqueous and micellar media are presented in this paper. Coumarin has historically been the subject of intense photochemical and spectroscopic interest, mainly as a consequence of its importance in biological systems. Coumarin has been chosen for our investigation as its fascinating photochemical behavior has been fairly well explored,2 and therefore the environmental influence, which is the subject of our concern, would be easily understandable.
Resumo:
The solubility of ibuprofen was measured in water (W) - ethanol (E) mixtures from 0 to 50% w/w ethanol at 10, 25 and 40 °C by the dissolution method using UV spectrophotometry to determine the ibuprofen concentrations. The UV calibration for ibuprofen in different water - ethanol mixtures showed Beer - Lambert linearity, however the slopes differed, which indicated the structure of the drug is influenced by the solvent system i.e. the water - ethanol ratio. The ibuprofen solubility in water (zero ethanol) is low (~ 50 ppm) but increases near exponentially with increasing ethanol content. At 40 °C, there is phase separation between 34% and 63% w/w E/(E+W). The solubility data will be used to select precipitation crystallizer conditions to directly produce free flowing ibuprofen particles (<5 m) for developing a dry powder inhaler (DPI) formulation for lung delivery.
Resumo:
Formation of fibril-type nanostructures of the Alzheimer's beta-amyloid diphenylalanine (L-Phe-L-Phe, FF) at the organic-aqueous interface and the factors affecting their structures have been investigated. Such nanostructures are also formed by bovine serum albumin and bovine pancreas insulin. The concentration of the precursor taken in the aqueous layer plays an important role in determining the morphology of the nanostructures, The addition of curcumin to the organic layer changes the structure of the self-assembled one-dimensional aggregates of diphenylalanine. By coating the diphenylalanine dipeptide fibrils with appropriate precursors followed by calcination in air, it has been possible to obtain one-dimensional nanostructures of inorganic materials.
Resumo:
Synthetic amphiphiles have been employed for the investigation of diverse topics, e.g. membrane mimetics, drug delivery, ion sensing and even in certain separation processes. Metal-complexing amphiphiles comprise an interesting class of compounds possessing multiple utilities. Upon solubilization in water they form metallomicelles. For achieving specific catalysis of a variety of reactions, metallomicelles were utilized by applying the principles of coordination chemistry and self-organizing systems. Because of their certain similarities with the natural enzymes, metallomicelles were synthesized as catalysts for many reactions. In particular the metallomicelles play a catalytic role in reactions involving the hydrolysis of activated carboxylate esters, phosphate esters and amides at ambient conditions near neutral pH. Apart from the hydrolysis reactions, these were exploited to play pertinent role as Lewis acid catalysts in cycloaddition reactions, and in other reactions such as phenolic oxidation in presence of hydrogen peroxide. In this review we emphasize with the help of assorted examples, the design, synthesis of metal-complexing amphiphiles and their aggregation behavior leading to catalytic hydrolysis reactions in aqueous media.
Resumo:
Surface-enhanced Raman scattering (SERS) of pyridine adsorbed on ultrathin nanocrystalline Au and Ag films generated at the liquid-liquid interface has been investigated. The shifts and intensification of bands formed with these films comprising metal nanoparticles are comparable to those found with other types of Au and Ag substrates. SERS of rhodamine 6G adsorbed on Ag films has also been studied. The results demonstrate that nanocrystalline metal films prepared by the simple method involving the organic-aqueous interface can be used effectively for SERS investigations.