930 resultados para ANTIBACTERIAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by ¹H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), monoene anacardic acid (3), a-amirine (4), b-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis, electronic, infrared, elemental micro analytical studies were carried on N-(benzothiazol-2-yl)trichloroethanamide [4] and N-(benzothiazol-2-yl)chloroethanamide [5]. They were also screened in vitro and in vivo for antibacterial activity. The results indicate that the compounds are very stable and that they show high antibacterial activities against both gram-positive and gram-negative bacteria tested. Both derivatives of 2-aminobenzothiazole were active against the multiresistant bacteria with IZD ranging from 9 -18 mm [5] and 9 - 20mm [4]. From the MIC results it is observed that the [5] derivative produced a better antibacterial activity than the [4] derivative. The lethal concentrations (LC50) of the compounds were also determined. Their solubilities and melting points were also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 20% of the world's biodiversity is located in Brazilian forests and only a few plant extracts have been evaluated for potential antibacterial activity. In the present study, 705 organic and aqueous extracts of plants obtained from different Amazon Rain Forest and Atlantic Forest plants were screened for antibacterial activity at 100 µg/ml, using a microdilution broth assay against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. One extract, VO581, was active against S. aureus (minimum inhibitory concentration (MIC) = 140 µg/ml and minimal bactericidal concentration (MBC) = 160 µg/ml, organic extract obtained from stems) and two extracts were active against E. faecalis, SM053 (MIC = 80 µg/ml and MBC = 90 µg/ml, organic extract obtained from aerial parts), and MY841 (MIC = 30 µg/ml and MBC = 50 µg/ml, organic extract obtained from stems). The most active fractions are being fractionated to identify their active substances. Higher concentrations of other extracts are currently being evaluated against the same microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the antibacterial activities of the crude methanol extract, fractions (I-V) obtained after acid-base extraction and pure compounds from the stem bark of Aspidosperma ramiflorum. The minimum inhibitory concentration (MIC) was determined by the microdilution technique in Mueller-Hinton broth. Inoculates were prepared in this medium from 24-h broth cultures of bacteria (10(7) CFU/mL). Microtiter plates were incubated at 37ºC and the MICs were recorded after 24 h of incubation. Two susceptibility endpoints were recorded for each isolate. The crude methanol extract presented moderate activity against the Gram-positive bacteria B. subtilis (MIC = 250 µg/mL) and S. aureus (MIC = 500 µg/mL), and was inactive against the Gram-negative bacteria E. coli and P. aeruginosa (MIC > 1000 µg/mL). Fractions I and II were inactive against standard strains at concentrations of <=1000 µg/mL and fraction III displayed moderate antibacterial activity against B. subtilis (MIC = 500 µg/mL) and S. aureus (MIC = 250 µg/mL). Fraction IV showed high activity against B. subtilis and S. aureus (MIC = 15.6 µg/mL) and moderate activity against E. coli and P. aeruginosa (MIC = 250 µg/mL). Fraction V presented high activity against B. subtilis (MIC = 15.6 µg/mL) and S. aureus (MIC = 31.3 µg/mL) and was inactive against Gram-negative bacteria (MIC > 1000 µg/mL). Fractions III, IV and V were then submitted to bioassay-guided fractionation by silica gel column chromatography, yielding individual purified ramiflorines A and B. Both ramiflorines showed significant activity against S. aureus (MIC = 25 µg/mL) and E. faecalis (MIC = 50 µg/mL), with EC50 of 8 and 2.5 µg/mL for ramiflorines A and B, respectively, against S. aureus. These results are promising, showing that these compounds are biologically active against Gram-positive bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con acentuación en Química de Productos Naturales) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of nonelectrolytic lanthanide(III) complexes, [ ML 2 Cl 3 ] · 2 H 2 O, where M is lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III), terbium(III), dysprosium(III), and yttrium(III), containing sulfamethoxazole ligand (L) are prepared. The structure and bonding of the ligand are studied by elemental analysis, magnetic susceptibility measurements, IR, 1 H NMR, TG / DTA , X-ray diffraction studies, and electronic spectra of the complexes. The stereochemistry around the metal ions is a monocapped trigonal prism in which four of the coordination sites are occupied by two each from two chelating ligands, sulfonyl oxygen, and nitrogen of the amide group and the remaining three positions are occupied by three chlorines. The ligand and the new complexes were tested in vitro to evaluate their activity against the bacteria Escherichia coli and Staphylococcus aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we address the issue on gut associated lactic acid bacteria (LAB) isolated from the intestine of estuarine fish Mugil cephalus using de Man Rogossa and Sharpe (MRS) agar. LAB isolates were identified biochemically and screened for their ability to inhibit in vitro growth of various fish, shrimp and human pathogens. Most of the LAB isolates displayed an improved antagonism against fish pathogens compared to shrimp and human pathogens. Selected representative strains displaying high antibacterial activity were identified using 16S rRNA gene sequence analysis. Of the selected strains Lactobacillus brevis was the most predominant. Four other species of Lactobacillus, Enterobacter hormaechei and Enterobacter ludwigii were also identified. It was also observed that even among same species, considerable diversity with respect to substrate utilization persisted. Considering the euryhaline nature of grey mullet (Mugil cephalus), the LAB isolated from the gut possessed good tolerance to varying salt concentrations. This finding merits further investigation to evaluate whether the isolated LAB could be used as probiotics in various fresh and sea water aquaculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TThe invention of novel antibiotics and other bioactive microbial metabolites continues to be an important aim in new drug discovery programmes. Actinomycetes have the potential to synthesize lots of diverse biologically vigorous secondary metabolites and in the last decades actinomycetes became the most productive source for antibiotics. Therefore in the present study we analyze the antibacterial activity of the actinomycetes isolated from grassland soil samples of Tropical Montane forest. A total of 33 actinomycete strains isolated were characterized and screened for antibacterial activities using well diffusion method against six specific pathogenic organisms. Identification of the isolates revealed that the majority of them were belonging to Streptomycetes followed by Nocardia, Micromonospora, Pseudonocardia, Streptosporangium, Nocardiopsis and Saccharomonospora. Among the 33 isolates, Gr1 strain showed antagonistic activity against all checked pathogens. Nine strains showed antibacaterial activity against Listeria, Vibrio cholera, Bacillus cereus, Staphylococcus aureus and Salmonella typhi and only 2 strains (Gr1and Gr25) showed antagonism to E. coli. The overall percentage of activity of actinomycetes isolates against each pathogenic bacterium was also calculated. While 63.63% of the actinomycetes were antagoinistic against Listeria, Vibrio cholerae, and Bacillus cereus, 60.6% of them were antagonistic to Staphylococcus aureus. Very few isolates (6.06%) showed antibacterial activity against E. coli. In general most of the actinomycetes isolates were antagonistic to grampositive bacteria such as Listeria, Bacillus and Staphylococcus than Gram-negative bacteria Vibrio cholerae, E. coli and Salmonella

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound L-R-aminoethylphosphonic acid (L-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolysed in situ by bacterial borne glycosidase enzymes, to selectively afford L-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of L-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained L-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75 mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of L-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Aim To investigate the antibacterial effect of Tetraclean, MTAD and five experimental irrigants using both direct exposure test with planktonic cultures and mixed-species in vitro biofilm model. Methodology Tetraclean, MTAD and five experimental solutions that were modifications of existing formulae including MTAD + 0.01% cetrimide (CTR), MTAD + 0.1% CTR, MTAC-1 (Tween 80 replaced by 0.01% CTR in MTAD), MTAC-2 (Tween 80 replaced by 0.1% CTR) and MTAD-D (MTAD without the Tween 80 and no CTR added) were used as disinfectants in the experiments. In the direct exposure test, a suspension of Enterococcus faecalis was mixed with each of the solutions. After 0.5, 1, 3 and 10 min, an inactivator was added and the number of surviving bacteria was calculated. A mixed-species biofilm from subgingival plaque bacteria was grown in brain heart infusion broth in anaerobic conditions on synthetic hydroxyapatite discs. Two-week-old biofilms were exposed to the solutions for 0.5, 1 and 3 min. The samples were observed by confocal laser scanning microscopy after bacterial viability staining. The scans were quantitatively analysed, and the volume of killed cells of all cells was calculated for each medicament. Results Tetraclean and MTAC-2 (0.1% CTR) killed planktonic E. faecalis in < 30 s. Complete killing of bacteria required 1 min by MTAC-1, 3 min by MTAD + 0.1% CTR and 10 min by MTAD, MTAD-D and MTAD + 0.01% CTR. In the biofilm test, there were significant differences in microbial killing between the different solutions and times of exposure (P < 0.005). MTAC-2 showed the best performance, killing 71% of the biofilm bacteria in 3 min, followed by MTAC-1 and Tetraclean. MTAD and the three MTAD modifications demonstrated the lowest antibacterial activity. Conclusion Tetraclean was more effective than MTAD against E. faecalis in planktonic culture and in mixed-species in vitro biofilm. CTR improved the antimicrobial properties of the solutions, whereas Tween 80 seemed to have a neutral or negative impact on their antimicrobial effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier Inc. All rights reserved.