891 resultados para ANTERIOR CINGULATE CORTEX
Resumo:
Objectif : Cette thèse a pour but de préciser les mécanismes neuropsychologiques de la douleur, de la régulation endogène de la douleur et de l'hypoalgésie induite psychologiquement (HIP) par la synthèse de près de trente ans de recherche imagerie cérébrale fonctionnelle. Méthodologie : Étant donné l'abondance des études sur le sujet et le manque d'intégration de leurs résultats, la technique de métaanalyse quantitative basée sur les coordonnées d'activation cérébrale fut privilégiée dans cette thèse, telle qu’implémentée dans l'algorithme ALE (Activation Likelyhood Estimate). Une force supplémentaire de cette thèse repose sur la rigueur du processus de sélection des articles. En effet, les études incluses dans les métaanalyses devaient satisfaire des critères stricts d'inclusion, ceci dans le but de favoriser la précision et la validité des conclusions subséquentes. Étude 1 : Le premier article visait à identifier les aires cérébrales impliquées dans la réduction de la douleur par des méthodes psychologiques d'interventions. Les articles retenus portent sur une variété de méthodes d'intervention, telles que le placebo, l'hypnose, la méditation, la perception de contrôle sur la stimulation douloureuse et l'induction d'émotions. Les résultats indiquent que l'HIP implique un vaste réseau d'activation qui comprend le cortex cingulaire antérieur, l'insula antérieure, les zones orbitofrontale et préfrontale latérale, ainsi que les régions pariétale, temporale et souscorticales. Ces activations reflèteraient l'implication des mécanismes neuropsychologiques cognitifs et émotionnels sous-tendent les interventions psychologiques ciblées par ces études, incluant la conscience de soi et la motivation. De plus, les divergences de patron d'activation entre les approches ont été explorées, notamment pour le placebo et la distraction. Étude 2 : Le deuxième article a identifié des patrons d'activations préférentiellement associés à la perception de la douleur, à l'HIP, ainsi que des activations communément associées à la douleur et l'HIP. Les résultats indiquent que 1) la perception de la douleur est associée à l'activation d'aires somatosensorielles et motrices, ce qui pourrait être le reflet de la préparation d'une action adaptative, 2) l'HIP est liée à l'engagement de régions préfrontales antéromédianes et orbitales, possiblement en lien avec des processus motivationnels et émotionnels, et 3) la douleur et l'HIP sont associés à l'activation d'aires préfrontales dorsolatérales, de l'insula antérieure et du cortex cingulaire moyen, ce qui pourrait refléter l'engagement spontané pendant la douleur de mécanismes endogènes de régulation descendante. Conclusion : Par ces études, cette thèse fait le point sur les mécanismes cérébraux impliqués différentiellement dans la perception de la douleur, dans sa régulation endogène et dans l'hypoalgésie induite psychologiquement.
Resumo:
Through meditation, people become aware of what happens in the body and mind, accepting the present experiences as they are and getting a better understanding of the true nature of things. Meditation practices and its inclusion as an intervention technique, have generated great interest in identifying the brain mechanisms through which these practices operate. Different studies suggest that the practice of meditation is associated with the use of different neural networks as well as changes in brain structure and function, represented in higher concentration of gray matter structures at the hippocampus, the right anterior insula, orbital frontal cortex (OFC) and greater involvement of the anterior cingulate cortex (ACC). These and other unrelated studies, shows the multiple implications of the regular practice of mindfulness in the structures and functions of the brain and its relation to certain observable and subjective states in people who practice it. Such evidence enabling the inclusion of mindfulness in psychological therapy where multiple applications have been developed to prove its effectiveness in treating affective and emotional problems, crisis management, social skills, verbal creativity, addiction and craving management, family and caregivers stress of dementia patients and others. However, neuropsychological rehabilitation has no formal proposals for intervention from these findings. The aim of this paper is to propose use of Mindfulness in neuropsychological rehabilitation process, taking the positions and theory of A.R. Luria.
Resumo:
Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Resumo:
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
Temporal discounting (TD) matures with age, alongside other markers of increased impulse control, and coherent, self-regulated behaviour. Discounting paradigms quantify the ability to refrain from preference of immediate rewards, in favour of delayed, larger rewards. As such, they measure temporal foresight and the ability to delay gratification, functions that develop slowly into adulthood. We investigated the neural maturation that accompanies the previously observed age-related behavioural changes in discounting, from early adolescence into mid-adulthood. We used functional magnetic resonance imaging of a hypothetical discounting task with monetary rewards delayed in the week to year range. We show that age-related reductions in choice impulsivity were associated with changes in activation in ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), ventral striatum (VS), insula, inferior temporal gyrus, and posterior parietal cortex. Limbic frontostriatal activation changes were specifically associated with age-dependent reductions in impulsive choice, as part of a more extensive network of brain areas showing age-related changes in activation, including dorsolateral PFC, inferior parietal cortex, and subcortical areas. The maturational pattern of functional connectivity included strengthening in activation coupling between ventromedial and dorsolateral PFC, parietal and insular cortices during selection of delayed alternatives, and between vmPFC and VS during selection of immediate alternatives. We conclude that maturational mechanisms within limbic frontostriatal circuitry underlie the observed post-pubertal reductions in impulsive choice with increasing age, and that this effect is dependent on increased activation coherence within a network of areas associated with discounting behaviour and inter-temporal decision-making.
Resumo:
The goal of this study was to examine behavioral and electrophysiological correlates of involuntary orienting toward rapidly presented angry faces in non-anxious, healthy adults using a dot-probe task in conjunction with high-density event-related potentials and a distributed source localization technique. Consistent with previous studies, participants showed hypervigilance toward angry faces, as indexed by facilitated response time for validly cued probes following angry faces and an enhanced P1 component. An opposite pattern was found for happy faces suggesting that attention was directed toward the relatively more threatening stimuli within the visual field (neutral faces). Source localization of the P1 effect for angry faces indicated increased activity within the anterior cingulate cortex, possibly reflecting conflict experienced during invalidly cued trials. No modulation of the early C1 component was found for affect or spatial attention. Furthermore, the face-sensitive N170 was not modulated by emotional expression. Results suggest that the earliest modulation of spatial attention by face stimuli is manifested in the P1 component, and provide insights about mechanisms underlying attentional orienting toward cues of threat and social disapproval.
Resumo:
Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.
Resumo:
Background Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. Methods Using functional magnetic resonance imaging (fMRI), the neural response to the sight and flavor of chocolate, and their combination, in 15 women recovered from restricting-type anorexia nervosa and 16 healthy control subjects matched for age and body mass index was investigated. The neural response to a control aversive condition, consisting of the sight of moldy strawberries and a corresponding unpleasant taste, was also measured. Participants simultaneously recorded subjective ratings of “pleasantness,” “intensity,” and “wanting.” Results Despite no differences between the groups in subjective ratings, individuals recovered from anorexia nervosa showed increased neural response to the pleasant chocolate taste in the ventral striatum and pleasant chocolate sight in the occipital cortex. The recovered participants also showed increased neural response to the aversive strawberry taste in the insula and putamen and to the aversive strawberry sight in the anterior cingulate cortex and caudate. Conclusions Individuals recovered from anorexia nervosa have increased neural responses to both rewarding and aversive food stimuli. These findings suggest that even after recovery, women with anorexia nervosa have increased salience attribution to food stimuli. These results aid our neurobiological understanding and support the view that the neural response to reward may constitute a neural biomarker for anorexia nervosa.
Resumo:
Background Abnormalities in the neural representation of rewarding and aversive stimuli have been well-described in patients with acute depression, and we previously found abnormal neural responses to rewarding and aversive sight and taste stimuli in recovered depressed patients. The aim of the present study was to determine whether similar abnormalities might be present in young people at increased familial risk of depression but with no personal history of mood disorder. Methods We therefore used functional magnetic resonance imaging to examine the neural responses to pleasant and aversive sights and tastes in 25 young people (16–21 years of age) with a biological parent with depression and 25 age- and gender-matched control subjects. Results We found that, relative to the control subjects, participants with a parental history of depression showed diminished responses in the orbitofrontal cortex to rewarding stimuli, whereas activations to aversive stimuli were increased in the lateral orbitofrontal cortex and insula. In anterior cingulate cortex the at-risk group showed blunted neural responses to both rewarding and aversive stimuli. Conclusions Our findings suggest that young people at increased familial risk of depression have altered neural representation of reward and punishment, particularly in cortical regions linked to the use of positive and negative feedback to guide adaptive behavior.
Resumo:
According to many modern economic theories, actions simply reflect an individual's preferences, whereas a psychological phenomenon called “cognitive dissonance” claims that actions can also create preference. Cognitive dissonance theory states that after making a difficult choice between two equally preferred items, the act of rejecting a favorite item induces an uncomfortable feeling (cognitive dissonance), which in turn motivates individuals to change their preferences to match their prior decision (i.e., reducing preference for rejected items). Recently, however, Chen and Risen [Chen K, Risen J (2010) J Pers Soc Psychol 99:573–594] pointed out a serious methodological problem, which casts a doubt on the very existence of this choice-induced preference change as studied over the past 50 y. Here, using a proper control condition and two measures of preferences (self-report and brain activity), we found that the mere act of making a choice can change self-report preference as well as its neural representation (i.e., striatum activity), thus providing strong evidence for choice-induced preference change. Furthermore, our data indicate that the anterior cingulate cortex and dorsolateral prefrontal cortex tracked the degree of cognitive dissonance on a trial-by-trial basis. Our findings provide important insights into the neural basis of how actions can alter an individual's preferences.
Resumo:
Rationale: Opioid antagonism reduces the consumption of palatable foods in humans but the neural substrates implicated in these effects are less well understood. Objectives: The aim of the present study was to examine the effects of the opioid antagonist, naltrexone, on neural response to rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging (fMRI) to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 20 healthy volunteers who received a single oral dose of naltrexone (50 mg) and placebo in a double-blind, repeated-measures cross-over, design. Results: Relative to placebo, naltrexone decreased reward activation to chocolate in the dorsal anterior cingulate cortex and caudate, and increased aversive-related activation to unpleasant strawberry in the amygdala and anterior insula. Conclusions: These findings suggest that modulation of key brain areas involved in reward processing, cognitive control and habit formation such as the dorsal anterior cingulate cortex (dACC) and caudate might underlie reduction in food intake with opioid antagonism. Furthermore we show for the first time that naltrexone can increase activations related to aversive food stimuli. These results support further investigation of opioid treatments in obesity.
Resumo:
Rationale: Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. Objectives: This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. Methods: We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Results: Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Conclusions: Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.
Resumo:
Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.
Resumo:
Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. Keywords: reward, THCv, obesity, fMRI, cannabinoid