955 resultados para ANHYDROUS AMMONIA
Resumo:
We conducted a study of the processes associated to NH3 emission in naturally ventilated dairy cattle facilities, having described factors that regulate NH3 emission, as well as methodologies for measuring these emissions at these facilities. Appropriate techniques to mitigate NH3 emission in facilities located in regions with warm climates were also identified. The most effective mitigation techniques with simple implementation include strategies associated to: (i) installation design and flooring, which lead to reduced emissions, (ii) excreta pre-excretion, namely the use of diets with optimized crude protein content and increased milk production at farm level; and (iii) excreta post-excretion, particularly by changing the conditions of environmental monitoring within the premises, practice introduction or additive application in the management of excreta deposited on floors.
Resumo:
ABSTRACT Total Ammoniacal Nitrogen - TAN (NH3 + NH4+) in wastewaters cause environmental degradation concerns due to their negative impacts on air, soil and water. Several technologies are available for TAN removal from the wastewaters. One emerging technology is the use of hydrophobic membrane as non-destructive NH3 extraction. In this paper the authors discuss the uses of gas permeable membrane (GPM) and its physicochemical characteristics that influence gas mass transfer rate, diffusion and recovery mechanisms of NH3 from liquid sources (e.g. animal wastewater). Several aspects of NH3 extraction from liquid manure and other TAN generation sources using GPM technology as well as its applicability for NH3 mitigation from liquid effluents and possible recovery as a nutrient for plant growth are also discussed in this review.
Resumo:
Ammonia can be used as a pH controller in chloride-based metal recovery processes. In chloride conditions, ammonia reacts to ammonium chloride which can be regenerated back to ammonia with lime. Although the regeneration process itself has been known for a long time, the concentrations, non-reacting species, conditions, and even goals are different when comparing the ammonia regeneration process in different industries. The main objective of this thesis was to study the phenomena, equipment, and challenges in ammonia regeneration in the nickel process and to make a preliminary process design. The study concentrated on the regeneration and recovery units. The thesis was made by process simulation and laboratory tests using the current processes as initial information. The results were combined from all of the information obtained during the studies to provide a total process solution, which can be used as a basis when designing an ammonia regeneration process to be used in industry. In particular, it was possible to determine ammonia recovery with a stripping column and the achievement of the desired ammonia water product within the scope of this thesis. The required mass flows and process conditions were also determined. The possible challenges and solutions or further studies to overcome them were provided as well to ease the prediction and design of the ammonia regeneration process in the future. On the basis of the results of this thesis, the ammonia regeneration process can be developed further and implemented in the nickel chloride leaching process.
Resumo:
Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.
Resumo:
The dependence of sweat composition and acidity on sweating rate (SR) suggests that the lower SR in children compared to adults may be accompanied by a higher level of sweat lactate (Lac-) and ammonia (NH3) and a lower sweat pH. Four groups (15 girls, 18 boys, 8 women, 8 men) cycled in the heat (42ºC, 20% relative humidity) at 50% VO2max for two 20-min bouts with a 10-min rest before bout 1 and between bouts. Sweat was collected into plastic bags attached to the subject's lower back. During bout 1, sweat from girls and boys had higher Lac- concentrations (23.6 ± 1.2 and 21.2 ± 1.7 mM; P < 0.05) than sweat from women and men (18.2 ± 1.9 and 14.8 ± 1.6 mM, respectively), but Lac- was weakly associated with SR (P > 0.05; r = -0.27). Sweat Lac- concentration dropped during exercise bout 2, reaching similar levels among all groups (overall mean = 13.7 ± 0.4 mM). Children had a higher sweat NH3 than adults during bout 1 (girls = 4.2 ± 0.4, boys = 4.6 ± 0.6, women = 2.7 ± 0.2, and men = 3.0 ± 0.2 mM; P < 0.05). This difference persisted through bout 2 only in females. On average, children's sweat pH was lower than that of adults (mean ± SEM, girls = 5.4 ± 0.2, boys = 5.0 ± 0.1, women = 6.2 ± 0.5, and men = 6.2 ± 0.4 for bout 1, and girls = 5.4 ± 0.2, boys = 6.5 ± 0.5, women = 5.2 ± 0.2, and men = 6.9 ± 0.4 for bout 2). This may have favored NH3 transport from plasma to sweat as accounted for by a significant correlation between sweat NH3 and H+ (r = 0.56). Blood pH increased from rest (mean ± SEM; 7.3 ± 0.02) to the end of exercise (7.4 ± 0.01) without differences among groups. These results, however, are representative of sweat induced by moderate exercise in the absence of acidosis.
Resumo:
This research was directed towards the investigation and development of an aryne route to the syntheses of aporphi ne and dibenzopyrrocolinium (dibenzoindolizinium) alkaloids and to the stability of the latter under the conditions used for aryne formation. The work c an be divided into three main sections . i) - Synthesis of Glaucine 6-Bromo-3,4-dimethoxyphenylacetic acid, prepared by the action of bromine i n acetic acid on3,4-dimethoxyphenylacetic a cid, was converted into its acid chloride by t he action of thionyl chloride. This on treatment with 3,4- dimethoxyphenylethylamine pr ovided N-(3, 4-dimethoxyphenylethyl)- 2-(2-bromo-4,S-dimethoxyphenyl)-acetamide which on dehydration with phosphoryl chloride (Bischler Napieralski reaction) in dry benzene afforded l -(2-bromo-4,S-dimethoxybenzyl)- 3,4-dihydro-6,7-dimethoxyisoquinoline, isolated as hydrochl oride. A new method o f destroying the excess of phosphoryl chloride was developed which proved to be quite useful. Methylation of the dihydroisoquinoline'with methyl iodide in methanol , and subsequent reduction with sodium borohydride provided (±)-6-bromolaudanosine. Act ion of potassamide or sodamide in anhydrous liquid ammonia on (±)-6-bromolaudanosine yielded the corresponding amino derivative along with other products. Diazotization and ring closure of (±)-6-aminolaudanosine then a f forded (±)-glaucine which was isolated as methiodide. ii) - Intramolecular Capture of Aryne During Glaucine Synthesis, and Subsequent Reactions . This section deals with the by-products formed under the conditions of the aryne stage of t he glaucine synthesis. The crude product, obtained in the reaction of potassamide or sodamide in liquid ammonia on (±)-6-bromolaudanosine, was s eparated by chromatography, Three products were separated and identified. a ) - 5,6-Dimethoxy-2-( 3,4-dimethoxy-6-ethylphenyl)-lmethylindole. Two mechanisms are proposed for the formation of this interesting product. This compound also was prepared by the action of potassamide in l,iquid ammonia on 5,6 ,l2,l2atetrahydro- 2,3,9,lO-tetramethoxy-7-methyldibenz[b,g]indolizinium i odide . b) - 5,6-Dimethoxy-2-(3,4-dimethoxy-6-vinylphenyl)-lmethylindoline. Its formation represented a new method of Hofmann degradation . Further confirmation of structure was done by performing the normal Hofmann reaction on 5, 6,12,12a-tetrahydro -2/3,9,lO-tetramethoxy ~7-methyldibe nz[ b,g]indolizinium iodide. The indoline prepared i n this way was identical in all respects with that prepared above . c) - 1- (2-amino-4,5-dimethoxybenzyl ) -l,2,3,4-tetrahydro-2- methyl-6,7-dimethoxyisoquinoline, was converted t o glaucine as stated in section 1 . iii) - Attempt:,ed Sxnthesis of Liriodenine Piperonal was converted into 3,4-methylenedioxyinitrostyrene which on reduction with lithium aluminium hydride provided 3,4-methylenedioxyphenylethylamine. The method of extraction after the reduction was improved t o some extent. The amine on condensation with m-chlorophenylacetyl chloride, prepared by the action of oxalyl chloride on 3,4-methylenedioxyphenylacetic acid, provided N-[ ~ -(3,4-methylenedioxyphenyl)- e thyl)-3-chlorophenylacetamide. This on dehydration with phosphoryl chloride in dry benzene followed by air oxidation afforded l-(3-chlorobenzoyl)-6,7-methylenedioxyi soquinoline. This compound on r eaction with potassamide in liquid ammonia afforded a crude product from which. one product was separated by chromatography i n a pure condition . This yellow compound analysed as,c17Hl ON2021 and was t he main product i n the reaction ; a t entative structure is proposed. A second compound, not obtained in pure condition, was submitted to Pschorr reaction in the hope of obtaining liriodenine, but without success.
Resumo:
This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.
Resumo:
1-(0- and m-Ohlorobenzoyl)isoquinolines have been synthesized by two routes involving Reissert compounds. One route involves condensation of 2-benzoyl-l,2-dihydroisoquinaldonitrile with the appropriate chlorobenzaldehyde and the second involves rearrangement of the appropriate Z-(chlorobenzoyl)-l,Z-dihydroisoquinaldonitrile under basic conditions. The action of potassamide in anhydrous liquid ammonia on both ketones gave unexpectedly N-(l-isoquinolyl)benzamide (67) as the major product and the use of dibenzo-18-crown-6-ether 98% substantially improved the yd..e.ld in the case of l-chloroketone. This amide (67) exhibits unusual hydrogen bonding. 1-(o-chlorobenzoyl)-6,7-dimethoxyisoquinoline (79) was prepared in very s,amll quantities by the route involving condensation of 2-benzoyll, Z-dihydro-6,7-dimethoxyisoquinaldonitrile with o-chlorobenzaldehyde. The poor yields are due to the instability of the anion of 2-benzoyl1, Z-dihydro-6,7-dimethoxyisoquinaldonitrile. Attempted preparation of the ketone (79) by rearrangement of 2-(o-chlorobenzoyl)-l,2-dihydro6,7- dimethoxyisoquinaldonitrile under basic conditions yielded the start~ng material (Reissert compound) and 6,7-dimethoxyisoquinoline. The action of potassamide in anhydrous liquid ammonia on l-(o-bromo-4,5-dimethoxybenzoyl)isoquinoline (85), which was prepared by the route involving the condensation of 2-benzoyl-l,4-dihydroisoquinaldonitrile with o-bromo-4,5-dimethoxybenzaldehyde, gave two products, which have not yet been identified. The ketone (85) and its precursors are interest~ng in that their 20 eV and 70 eV mass spectra do not show molecular ions.
Resumo:
Chronic liver failure leads to hyperammonemia and consequently increased brain ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on the amidation of glutamate to glutamine through glutamine synthetase, to efficiently clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not capable of increasing its capacity to remove ammonia, which even decreases in some regions of the brain. This non-induction of glutamine synthetase in astrocytes could result from possible limiting substrates or cofactors for the enzyme, or an indirect effect of ammonia on glutamine synthetase expression. In addition, there is evidence that nitration of the enzyme resulting from exposure to nitric oxide could also be implicated. The present review summarizes these possible factors involved in limiting the increase in capacity of glutamine synthetase in brain, in chronic liver failure.
Resumo:
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.
Resumo:
BACKGROUND/AIMS: It has been proposed that, in acute liver failure, skeletal muscle adapts to become the principle organ responsible for removal of blood-borne ammonia by increasing glutamine synthesis, a reaction that is catalyzed by the cytosolic ATP-dependent enzyme glutamine synthetase. To address this issue, glutamine synthetase expression and activities were measured in skeletal muscle of rats with acute liver failure resulting from hepatic devascularization. METHODS: Glutamine synthetase protein and gene expression were investigated using immunoblotting and semi-quantitative RT-PCR analysis. Glutamine synthetase activity and glutamine de novo synthesis were measured using, respectively, a standard enzymatic assay and [13C]-nuclear magnetic resonance spectroscopy. RESULTS: Glutamine synthetase protein (but not gene) expression and enzyme activities were significantly up-regulated leading to increased de novo synthesis of glutamine and increased skeletal muscle capacity for ammonia removal in acute liver failure. In contrast to skeletal muscle, expression and activities of glutamine synthetase in the brain were significantly decreased. CONCLUSIONS: These findings demonstrate that skeletal muscle adapts, through a rapid induction of glutamine synthetase, to increase its capacity for removal of blood-borne ammonia in acute liver failure. Maintenance of muscle mass together with the development of agents with the capacity to stimulate muscle glutamine synthetase could provide effective ammonia-lowering strategies in this disorder.
Resumo:
Elevated concentrations of ammonia in the brain as a result of hyperammonemia leads to cerebral dysfunction involving a spectrum of neuropsychiatric and neurological symptoms (impaired memory, shortened attention span, sleep-wake inversions, brain edema, intracranial hypertension, seizures, ataxia and coma). Many studies have demonstrated ammonia as a major player involved in the neuropathophysiology associated with liver failure and inherited urea cycle enzyme disorders. Ammonia in solution is composed of a gas (NH(3)) and an ionic (NH(4) (+)) component which are both capable of crossing plasma membranes through diffusion, channels and transport mechanisms and as a result have a direct effect on pH. Furthermore, NH(4) (+) has similar properties as K(+) and, therefore, competes with K(+) on K(+) transporters and channels resulting in a direct effect on membrane potential. Ammonia is also a product as well as a substrate for many different biochemical reactions and consequently, an increase in brain ammonia accompanies disturbances in cerebral metabolism. These direct effects of elevated ammonia concentrations on the brain will lead to a cascade of secondary effects and encephalopathy.
Resumo:
We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation.
Resumo:
Hyperammonemia is a feature of acute liver failure (ALF), which is associated with increased intracranial pressure (ICP) and brain herniation. We hypothesized that a combination of L-ornithine and phenylacetate (OP) would synergistically reduce toxic levels of ammonia by (1) L-ornithine increasing glutamine production (ammonia removal) through muscle glutamine synthetase and (2) phenylacetate conjugating with the ornithine-derived glutamine to form phenylacetylglutamine, which is excreted into the urine. The aims of this study were to determine the effect of OP on arterial and extracellular brain ammonia concentrations as well as ICP in pigs with ALF (induced by liver devascularization). ALF pigs were treated with OP (L-ornithine 0.07 g/kg/hour intravenously; phenylbutyrate, prodrug for phenylacetate; 0.05 g/kg/hour intraduodenally) for 8 hours following ALF induction. ICP was monitored throughout, and arterial and extracellular brain ammonia were measured along with phenylacetylglutamine in the urine. Compared with ALF + saline pigs, treatment with OP significantly attenuated concentrations of arterial ammonia (589.6 +/- 56.7 versus 365.2 +/- 60.4 mumol/L [mean +/- SEM], P= 0.002) and extracellular brain ammonia (P= 0.01). The ALF-induced increase in ICP was prevented in ALF + OP-treated pigs (18.3 +/- 1.3 mmHg in ALF + saline versus 10.3 +/- 1.1 mmHg in ALF + OP-treated pigs;P= 0.001). The value of ICP significantly correlated with the concentration of extracellular brain ammonia (r(2) = 0.36,P< 0.001). Urine phenylacetylglutamine levels increased to 4.9 +/- 0.6 micromol/L in ALF + OP-treated pigs versus 0.5 +/- 0.04 micromol/L in ALF + saline-treated pigs (P< 0.001).Conclusion:L-Ornithine and phenylacetate act synergistically to successfully attenuate increases in arterial ammonia, which is accompanied by a significant decrease in extracellular brain ammonia and prevention of intracranial hypertension in pigs with ALF.