941 resultados para ANGSTROM RESOLUTION
Resumo:
Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 angstrom resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis, for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting beta-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.
Resumo:
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Leptospixosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-angstrom-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystal lographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and lamixidn. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The hemeprotein myeloperoxidase (MPO) participates in innate immune defense through its ability to generate potent microbicidal oxidants. However, these oxidants are also key mediators of the tissue damage associated with many inflammatory diseases. Thus, there is considerable interest in developing therapeutically useful MPO inhibitors. Here, we used structure-based drug design (SBDD) and ligand-based drug design (LBDD) to select for potentially new and selective MPO inhibitors. A pharmacophore model was developed based on the crystal structure of human MPO in complex with salicylhydroxamic acid (SHA), a known inhibitor of the enzyme. The pharmacophore model was used to screen the ZINC database for potential ligands, which were further filtered on the basis of their physical-chemical properties and docking score. The filtered compounds were visually inspected, and nine were purchased for experimental studies. Surprisingly, almost all of the selected compounds belonged to the aromatic hydrazide class, which had been previously described as MPO inhibitors. The compounds selected by virtual screening were shown to inhibit the chlorinating activity of MPO; the top four compounds displayed IC(50) values ranging from 1.0 to 2.8 mM. MPO inactivation by the most effective compound was shown to be irreversible. Overall, our results show that SBDD and LBDD may be useful for the rational development of new MPO inhibitors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BjVIII is a new myotoxic Lys49-PLA2 isolated from Bothrops jararacussu venom that exhibits atypical effects on human platelet aggregation. To better understand the mode of action of BjVIII, crystallographic studies were initiated. Two crystal forms were obtained, both containing two molecules in the asymmetric unit (ASU). Synchrotron radiation diffraction data were collected to 2.0 angstrom resolution and 1.9 angstrom resolution for crystals belonging to the space group P2(1)2(1)2(1) (a = 48.4 angstrom, b = 65.3 angstrom, c = 84.3 angstrom) and space group P3(1)21 (a = b = 55.7 angstrom, c = 127.9 angstrom), respectively. Refinement is currently in progress and the refined structures are expected to shed light on the unusual platelet aggregation activity observed for BjVIII.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Haemoglobins constitute a set of proteins with interesting structural and functional properties, especially when the two large animal groups reptiles and fishes are focused on. Here, the crystallization and preliminary X-ray analysis of haemoglobin-II from the South American fish matrinxa (Brycon cephalus) is reported. X-ray diffraction data have been collected to 3.0 Angstrom resolution using synchrotron radiation (LNLS). Crystals were determined to belong to space group P2(1) and preliminary structural analysis revealed the presence of two tetramers in the asymmetric unit. The structure was determined using the standard molecular-replacement technique.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. These peptides present a wide spectrum of biological activities, such as mast cell degranulation, hemolytic activity and also reveals antimicrobial activity. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized. At room temperature these crystals diffracted to 2.8 Angstrom resolution. However, upon cooling to cryogenic temperature around 85 K, the original resolution limit could be improved to 2.0 Angstrom. Crystals were determined to belong to the space group P3(1) (P3(2)). This is the first mastoparan to be crystallized and it will provide further insights in the conformational significance of mastoparan toxins, with respect to their potency and activity in G protein regulation. (C) 3001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. With the aim of determining the structural basis for this novel activity, we have solved the crystal structure of myotoxin-II, a Lys49-PLA(2) isolated from the venom of Cerrophidion (Bothrops) godmani (godMT-II) at 2.8 Angstrom resolution by molecular replacement. The final model has been refined to a final crystallografic residual (R-factor) of 18.8% (R-free = 28.2%), with excellent stereochemistry. godMT-II is also monomeric in the crystalline state, and small-angle X-ray scattering results demonstrate that the protein is monomeric in solution under fisicochemical conditions similar to those used in the crystallographic studies. (C) 1999 Academic Press.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Crystals of a myotoxic phospholipase A(2) from Bothrops neuwiedi pauloensis have been obtained. They diffracted at 2.5 Angstrom resolution using a synchrotron radiation source and belong to space group P3(1)21. Preliminary analysis shows that there are two molecules in the asymmetric unit. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The crystal structure of an acidic phospholipase A(2) isolated from Bothrops jararacussu venom (BthA-I) chemically modified with p-bromophenacyl bromide (BPB) has been determined at 1.85 angstrom resolution. The catalytic, platelet-aggregation inhibition, anticoagulant and hypotensive activities of BthA-I are abolished by ligand binding. Electron-density maps permitted unambiguous identification of inhibitor covalently bound to His48 in the substrate-binding cleft. The BthA-I-BPB complex contains three structural regions that are modified after inhibitor binding: the Ca2+-binding loop, ss-wing and C-terminal regions. Comparison of BthA-I-BPB with two other BPB-inhibited PLA(2) structures suggests that in the absence of Na+ ions at the Ca2+- binding loop, this loop and other regions of the PLA(2)s undergo structural changes. The BthA-I-BPB structure reveals a novel oligomeric conformation. This conformation is more energetically and conformationally stable than the native structure and the abolition of pharmacological activities by the ligand may be related to the oligomeric structural changes. A residue of the `pancreatic' loop (Lys69), which is usually attributed as providing the anticoagulant effect, is in the dimeric interface of BthA-I-BPB, leading to a new hypothesis regarding the abolition of this activity by BPB.