945 resultados para ANCILLARY LIGANDS
Resumo:
The crystal structures of complexes of Mycobacterium tuberculosis pantothenate kinase with the following ligands have been determined: (i) citrate; (ii) the nonhydrolysable ATP analogue AMPPCP and pantothenate (the initiation complex); (iii) ADP and phosphopantothenate resulting from phosphorylation of pantothenate by ATP in the crystal (the end complex); (iv) ATP and ADP, each with half occupancy, resulting from a quick soak of crystals in ATP (the intermediate complex); (v) CoA; (vi) ADP prepared by soaking and cocrystallization, which turned out to have identical structures, and (vii) ADP and pantothenate. Solution studies on CoA binding and catalytic activity have also been carried out. Unlike in the case of the homologous Escherichia coli enzyme, AMPPCP and ADP occupy different, though overlapping, locations in the respective complexes; the same is true of pantothenate in the initiation complex and phosphopantothenate in the end complex. The binding site of MtPanK is substantially preformed, while that of EcPanK exhibits considerabl plasticity. The difference in the behaviour of the E. coli and M. tuberculosis enzymes could be explained in terms of changes in local structure resulting from substitutions. It is unusual for two homologous enzymes to exhibit such striking differences in action. Therefore, the results have to be treated with caution. However, the changes in the locations of ligands exhibited by M. tuberculosis pantothenate kinase are remarkable and novel.
Resumo:
Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.
Resumo:
The hydrothermal reaction of Ln(NO3)(3), Ni(NO3)(2), NaN3, and isonicotinic acid (L) yielded two novel 3-D coordination frameworks (1 and 2) of general formula [Ni(2)Ln(L)(5)(N-3)(2)(H2O)(3)] center dot 2H(2)O (Ln = Pr(III) for 1 and Nd(III) for 2), containing Ni-Pr or Ni-Nd hybrid extended three-dimensional networks containing both azido and carboxylate as co-ligands. Both the compounds are found to be isostructural and crystallize in monoclinic system having P2(1)/n space group. Here the lanthanide ions are found to be nonacoordinated. Both bidentate and monodentate modes of binding of the carboxylate with the lanthanides have been observed in the above complexes. Variable temperature magnetic studies of the above two complexes have been investigated in the temperature range 2-300 K which showed dominant antiferromagnetic interaction in both the cases and these experimental results are analyzed with the theoretical models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Interaction of nickel(I1) and copper(I1) complexes of 4,9-dimethy1-5,8-diazadodeca-4,8diene-2,1 ldione, Ni(baen) and 4,6,9-trimethyl-5, 8diazadodeca-4,8-diene-2,ll-dione, Ni(bapn), with arene diazonium chlorides in buffered solutions of methanol yielded metal derivatives of glyoxaliminearylhydrazones. This typical electrophilic addition at the 3-carbon of the complex occurs owing to the pseudo aromatic behaviour of the chelate ring. A mechanism which predicts the attack of the diazonium cation through the coordination shell of the metal is well documented from the available experimental evidences. The chemical reactivity of a few complexes with a single residual non-substituted y-carbon is reasonably manifested by their reaction with phenyl isocyanate.
Resumo:
This thesis explores perspectives on the accountability of Private Ancillary Funds (PAFs), a type of Australian endowed philanthropic foundation. Privately established for a public benefit purpose, with limited formal accountability requirements, there are differing and sometimes conflicting perspectives on the nature and scope of PAF accountability. Through in-depth interviews with managers and trustees of 10 PAFs, forms and relationships of PAF accountability are uncovered. Findings reveal accountability for PAFs does not necessarily include public disclosure or transparency. However, engagement with accountability for a PAF results in greater impact and satisfaction for those involved.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.
Resumo:
Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.
Resumo:
The complexing ability of a new series of ligands, β-N-arylimine hydrazones, toward Ni (II) and Cu (II) ions has been studied. The isolated complexes are characterised on the basis of elemental analysis, spectroscopic methods and magnetic susceptibility measurements. The ligands are notentially bidentate in character coordinating to divalent metal ions through the N1 and N5 nitrogens. Square planar geometry of the metal ions is suggested on the basis of experimental evidence.
Resumo:
The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.
Resumo:
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.