983 resultados para ANCHORAGE-INDEPENDENT GROWTH
Resumo:
Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region.
Resumo:
The RII beta regulatory subunit of cAMP-dependent protein kinase (PKA) contains an autophosphorylation site and a nuclear location signal, KKRK. We approached the structure-function analysis of RII beta by using site-directed mutagenesis. Ser114 (the autophosphorylation site) of human RII beta was replaced with Ala (RII beta-P) or Arg264 of KKRK was replaced with Met (RII beta-K). ras-transformed NIH 3T3 (DT) cells were transfected with expression vectors for RII beta, RII beta-P, and RII beta-K, and the effects on PKA isozyme distribution and transformation properties were analyzed. DT cells contained PKA-I and PKA-II isozymes in a 1:2 ratio. Over-expression of wild-type or mutant RII beta resulted in an increase in PKA-II and the elimination of PKA-I. Only wild-type RII beta cells demonstrated inhibition of both anchorage-dependent and -independent growth and phenotypic change. The growth inhibitory effect of RII beta overexpression was not due to suppression of ras expression but was correlated with nuclear accumulation of RII beta. DT cells demonstrated growth inhibition and phenotypic change upon treatment with 8-Cl-cAMP. RII beta-P or RII beta-K cells failed to respond to 8-Cl-cAMP. These data suggest that autophosphorylation and nuclear location signal sequences are integral parts of the growth regulatory mechanism of RII beta.
Resumo:
The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E-Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.
Resumo:
Zyxin is a phosphoprotein localized at the focal adhesions and on the actin stress fibres, where it regulates the cytoskeleton organization. In addition, zyxin can shift into the nucleus and modulates the gene expression, affecting key cellular processes. Consequently, zyxin is as a crucial factor in the malignancy of several cancers, like Ewing sarcoma (EWS). EWS is a rare tumour of the bones, affecting children and adolescents. The main features of EWS are the presence of a chimeric transcriptional factor, EWS-FLI1 and the high expression of CD99, a glycoprotein necessary for the maintenance of the malignant phenotype. Triggering of CD99 with specific antibodies causes massive cell death, an effect that requires zyxin presence. In EWS zyxin is repressed by EWS-FLI1 and its forced re-expression counteracts the malignant phenotype. In this work we decided to deepen our knowledge on how zyxin affects EWS malignancy. We proved that zyxin is a negative regulator of cell migration, survival and growth in anchorage-independent conditions, confirming the tumour suppressor role of zyxin. Then we focused on the relation between CD99 and zyxin. Loss of function of CD99, by engagement with specific antibodies or use of shRNA, increases zyxin levels and promotes its nuclear translocation. Here, we observed that zyxin impairs the transcriptional activity of the Glioma associated oncogene 1 (Gli1), a member of the Hedgehog signalling pathway, which has a relevant oncogenic function in EWS. To support these evidences, we also reported that the loss of function of CD99 inhibits, trough zyxin mediation, the expression of Gli1 up-regulated target genes, such as NKX2-2, PTCH1 and cyclins, whilst enhances the expression of its down-regulated target GAS1. In conclusion, we presented a more accurate depiction of zyxin role in EWS, which in the future could be further developed in hope to offer new therapeutic approaches.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of cis-configured epoxides and aziridines containing hydrophobic moieties and amino acid esters,were synthesized as new potential inhibitors of the secreted aspartic protease 2 (SAP2) of Candida albicans. Enzyme assays revealed the N- benzyl-3-phenyl-substituted aziridines 11 and 17 as the most potent inhibitors, with second-order inhibition, rate constants (k(2)) between 56000 and 12-1000 M-1 min(-1). The compounds were shown to be pseudo-irreversible dual-mode, inhibitors: the interm ediate esterified enzyme resulting from nucleophilic ring opening was hydrolyzed and yielded amino alcohols as transition state-mimetic reversible inhibitors. The results of docking studies with the ring-closed aziridine forms of the inhibitors suggest binding modes mainly dominated by hydrophobic interactions with the S1, S1' S2, and S2' subsites of the protease, and docking studies with the processed amino alcohol forms predict additional hydrogen bonds of the new hydroxy group to the active site Asp residues. C. albicans growth assays showed the compounds to decrease SAP2-dependent growth while not affecting SAP2-independent growth.
Resumo:
The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Human breast cancer cells (MCF-7, T-47-D and ZR-75-1) can adapt to circumvent any reduced growth rate during long-term oestrogen deprivation, and this provides three model systems to investigate mechanisms of endocrine resistance in breast cancer. In this paper we report consistent differences in the effects of three growth inhibitors following long-term oestrogen deprivation in all three cell models. Long-term oestrogen deprivation of MCF-7, T-47-D and ZR-75-1 cells resulted in reduced growth inhibition by PD98059 (2–10 µg/ml), implying a loss of dependence on mitogen-activated protein kinase pathways for growth. The growth inhibitor LY294002 (2–10 µM) inhibited growth of both oestrogen-maintained and oestrogen-deprived cells with similar dose–responses, implying continued similar dependence on phosphoinositide 3-kinase (PI3K) pathways with no alteration after adaptation to oestrogen independent growth. However, by contrast, long-term oestrogen deprivation resulted in an increased sensitivity to growth inhibition by rapamycin, which was not reduced by readdition of oestradiol. The enhanced inhibition of long-term oestrogen-deprived MCF-7-ED, T-47-D-ED and ZR-75-1-ED cell growth by combining rapamycin with LY294002 at concentrations where each alone had little effect, offers preclinical support to the development of therapeutic combinations of rapamycin analogues with other PI3K inhibitors in endocrine-resistant breast cancer.
Resumo:
This review examines recent evidence linking exposure to aluminium with the aetiology of breast cancer. The human population is exposed to aluminium throughout daily life including through diet, application of antiperspirants, use of antacids and vaccination. Aluminium has now been measured in a range of human breast structures at higher levels than in blood serum and experimental evidence suggests that the tissue concentrations measured have the potential to adversely influence breast epithelial cells including generation of genomic instability, induction of anchorage-independent proliferation and interference in oestrogen action. The presence of aluminium in the human breast may also alter the breast microenvironment causing disruption to iron metabolism, oxidative damage to cellular components, inflammatory responses and alterations to the motility of cells. The main research need is now to investigate whether the concentrations of aluminium measured in the human breast can lead in vivo to any of the effects observed in cells in vitro and this would be aided by the identification of biomarkers specific for aluminium action.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.
Resumo:
Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^
Resumo:
BACKGROUND Conventional chemotherapy in malignant pleural mesothelioma (MPM) has minimal impact on patient survival due to the supposed chemoresistance of cancer stem cells (CSCs). We sought to identify a sub-population of chemoresistant cells by using putative CSC markers, aldehyde dehydrogenase (ALDH) and CD44 in three MPM cell lines; H28, H2052 and Meso4. METHODS The Aldefluor assay was used to measure ALDH activity and sort ALDH(high) and ALDH(low) cells. Drug-resistance was evaluated by cell viability, anchorage-independent sphere formation, flow-cytometry and qRT-PCR analyses. RESULTS The ALDH(high) - and ALDH(low) -sorted fractions were able to demonstrate phenotypic heterogeneity and generate spheres, the latter being less efficient, and both showed an association with CD44. Cis- diamminedichloroplatinum (II) (cisplatin) treatment failed to reduce ALDH activity and conferred only a short-term inhibition of sphere generation in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. Induction of drug sensitivity by an ALDH inhibitor, diethylaminobenzaldehyde (DEAB) resulted in significant reductions in cell viability but not a complete elimination of the sphere-forming cells, suggestive of the presence of a drug-resistant subpopulation. At the transcript level, the cisplatin + DEAB-resistant cells showed upregulated mRNA expression levels for ALDH1A2, ALDH1A3 isozymes and CD44 indicating the involvement of these markers in conferring chemoresistance in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. CONCLUSIONS Our study shows that ALDH(high) CD44(+) cells are implicated in conveying tolerance to cisplatin in the three MPM cell lines. The combined use of CD44 and ALDH widens the window for identification and targeting of a drug-resistant population which may improve the current treatment modalities in mesothelioma.
Resumo:
Genetic analysis, both karyotyping and comparative genomic hybridization, of prostate cancer cell lines and specimens have revealed multiple areas of concordant increases in DNA content. An increase of DNA in specific regions of the genome in cancer is often associated with the amplification of oncogenes. Based on these observations we have hypothesized that oncogenes are involved in the initiation or progression of prostate cancer. An expression cloning approach was utilized to identify candidate oncogenes in prostate cancer. ^ A full-length, unidirectional cDNA expression library was constructed from DU145 prostate cancer cells. The cDNA library was screened using CP12, a rat prostate epithelial cell line. In soft agarose assays, CP12 (parental or vector transfected) do not form colonies. However, upon the introduction of a number of known oncogenes CP12 becomes anchorage independent in soft agarose. Based on this in-vitro phenotypic shift, a DU145 cDNA library was stably transfected into CP12, and selected for anchorage independence. Two hundred fifty nine anchorage independent clones were isolated. Some colonies contained more than one insert, bringing the candidate oncogene pool to approximately 400. Seven inserts were sequenced at random. Using the sequences obtained, GenBank was screened, and matches were found with p53, PARG1, a mitochondrial ATPase, RNF6, and three unknown genes that mapped to Unigene clusters. As the pool of cDNA inserts appeared promising, overexpressed genes were further selected. From 259 clones, 17 clones were overexpressed more than 6-fold in DU145 compared to Normal Prostate. From the 17 clones, 12 cDNA inserts were strongly expressed in DU145 and were isolated for sequencing. ^ Two of the sequences, 1G6 and 3E9, were identical. Expression of 1G6/2G9/3E9 was tested by RT-PCR. 1G6/2G9/3E9 was not expressed in normal prostate, but was expressed in all prostate cancer cell lines tested as well as six prostate cancer samples. When retransfected into CP12, 1G6/2G9/3E9 induced the formation of foci and anchorage independent colonies. Thus, functional and expression data suggest that 1G6/2G9/3E9 may be a prostate cancer oncogene. ^