919 resultados para AMPEROMETRIC BIOSENSOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly sensitive nonenzymatic amperometric glucose sensor was fabricated by using Ni nanoparticles homogeneously dispersed within and on the top of a vertically aligned CNT forest (CNT/Ni nanocomposite sensor), which was directly grown on a Si/SiO2 substrate. The surface morphology and elemental analysis were characterized using scanning electron microscopy and energy dispersive spectroscopy, respectively. Cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activities of CNT/Ni electrode. The CNT/Ni nanocomposite sensor exhibited a great enhancement of anodic peak current after adding 5 mM glucose in alkaline solution. The sensor can also be applied to the quantification of glucose content with a linear range covering from 5 μM to 7 mM, a high sensitivity of 1433 μA mM-1 cm-2, and a low detection limit of 2 μM. The CNT/Ni nanocomposite sensor exhibits good reproducibility and long-term stability, moreover, it was also relatively insensitive to commonly interfering species, such as uric acid, ascorbic acid, acetaminophen, sucrose and d-fructose. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C-60 is reported for the first time. C-60 is embedded in tetra octyl ammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C-60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanohorns (SWCNHs) were used as a novel and biocompatible matrix for fabricating biosensing devices. The direct immobilization of acid-stable and thermostable soybean peroxidase (SBP) on SWCNH modified electrode surface can realize the direct electrochemistry of enzyme. Cyclic voltammogram of the adsorbed SBP displays a pair of redox peaks with a formal potential of -0.24V in pH 5 phosphate buffer solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vesicle of didodecyldhnethylammonimn bromide (DDAB) which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 x 10(-7) mol/L and the liner range was from 4 x 10(-7) mol/L to 2.4 x 10(-6) mol/L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An amperometric glucose biosensor was constructed based on a glassy carbon electrode modified with a Cobalt(II)hexacyanoferrate film which catalyzes electroreduction of hydrogen peroxide. Gelatin was used as immobilization matrix. Interference could be effectively eliminated by the combination of low detection potential with a Nafion coating. A low applied potential can avoid oxidation of interferences such as ascorbic acid, uric acid, p-acetyl-aminophenol, etc.. Nafion coating prevents interferences from access to the electrode surface by electrostatic repulsion. A wide linear range of detection was obtained. Analytical performance parameters are given and kinetic analysis discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A glucose oxidase (GOD) electrode with ferrocene (Fc) used as an electron transfer mediator has been described. Using Nafion, Fc was modified on a glassy carbon (GC) electrode surface, and glucose oxidase was then immobilized on the Fc-Nafion film, forming a GOD-Fc-Nafion enzyme electrode. The preparation method was quite simple and rapid. The enzyme electrode showed a reversible reaction of the redox couple (Fc+/Fc), used in a biosensor system, displayed a sensitive catalytic current response (response time was less than 20 s) on variation of the glucose concentration, with a wide linear range up to 16 mM and with good repeatability. The enzyme electrode showed almost no deterioration over the course of three weeks. There was little or no interference from electro-active anions, such as ascorbic acid, to the determination of glucose based on Nafion film and lower oxidizing potentials of the enzyme electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the applications of anew carbon paste electrode containing fibers of coconut (Cocus nucifera L) fruit, which are very rich in peroxidase enzymes naturally immobilized on its structure. The new sensor was applied for the amperometric quantification of benzoyl peroxide in facial creams and dermatological shampoos. The amperometric measurements were performed in 0.1 mol L(-1) phosphate buffer (pH 5.2), at 0.0 V (versus Ag/AgCl). On these conditions, benzoyl peroxide was rapidly determined in the 5.0-55 mu mol L(-1), with a detection limit of 2.5 mu mol L(-1) (s/n = 3), response time of 4.1 s (90% of the steady state) and sensitivity limit of 0.33 A mol L(-1) cm(-2). The amperometric results are in good agreement with those obtained by spectrophotometric technique, used as a standard method. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical biosensor using poly-phenol oxidasa (PPO) was constructed for the determination of phenolic compounds. The PPO employed with enzyme, it was obtained from Archontophoenix Cunninghamiana. The biosensor showed range of linearity in the range of 1 x 10(-3) to 1 x 10(-4) mol/L and a detection limit of 1 x 10(-4) mol/L. The optimal pH was 6,7 in medium phosphate buffer. The lifetime of the biosensors was 1 months, stored in phosphate buffer solution 0.1 mol/L to ambient temperature.