861 resultados para ALLYL-INSERTION MECHANISM
Resumo:
Three-dimensional discretizations used in numerical analyses of tunnel construction normally include excavation step lengths much shorter than tunnel cross-section dimensions. Simulations have usually worked around this problem by using excavation steps that are much larger than the actual physical steps used in a real tunnel excavation. In contrast, the analyses performed in this study were based on finely discretized meshes capable of reproducing the excavation lengths actually used in tunnels, and the results obtained for internal forces are up to 100% greater than those found in other analyses available in the literature. Whereas most reports conclude that internal forces depend on support delay length alone, this study shows that geometric path dependency (reflected by excavation round length) is very strong, even considering linear elasticity. Moreover, many other solutions found in the literature have also neglected the importance of the relative stiffness between the ground mass and support structure, probably owing to the relatively coarse meshes used in these studies. The analyses presented here show that relative stiffness may account for internal force discrepancies in the order of 60%. A dimensionless expression that takes all these parameters into account is presented as a good approximation for the load transfer mechanism at the tunnel face.
Resumo:
The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex-structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Copper strike baths are extensively used in metal plating industry as they present the ability to plate adherent copper layers on less-noble metal substrates such as steel and zinc die castings. However, in the last few years, due to environmental controls and safety policies for operators, the plating industry has been interested in replacing the toxic cyanide copper strike baths with environmentally friendly baths. A broad bibliographic review showed that the published papers, referring to the new nontoxic copper strike baths, are patents, having little or no emphasis focused on electrodeposition mechanisms. Therefore, it was decided to study the copper electrodeposition mechanism from a strike alkaline bath prepared with one of the most nontoxic chelating agents cited in many patents which is the 1-hydroxyethane-1,1-diphosphonic acid, known as HEDP. This acid forms very stable water soluble complexes with Cu(2+) ions, thus cupric sulfate was used for preparing the plating bath. The results obtained through a cyclic voltammetry technique showed that Cu(2+) ion reduction to Cu from an HEDP electrodeposition bath occurs via a direct reduction reaction without a formation of Cu(+) intermediates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
P>The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.
Resumo:
Paraquat is a broad-spectrum contact herbicide that has been encountered worldwide in several cases of accidental, homicidal, and suicidal poisonings. The pulmonary toxicity of this compound is related to the depletion of NADPH in the pneumocytes, which is continuously consumed by the reduction/oxidation of paraquat and reductase enzyme systems in the presence of O(2) (redox cycling). Based on this mechanism, an enzymatic-spectrophotometric method was developed for the determination of paraquat in urine samples. The velocity of NADPH consumption was monitored at 340 nm, every 10 s during 15 min. The velocity of NADPH oxidation correlated with the paraquat levels found in samples. The enzymatic-spectrophotometric method showed to be sensitive, making possible the detection of paraquat in urine samples at concentrations as low as 0.05 mg/L.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
The objective of this investigation was to examine in a systematic manner the influence of plasma protein binding on in vivo pharmacodynamics. Comparative pharmacokinetic-pharmacodynamic studies with four beta blockers were performed in conscious rats, using heart rate under isoprenaline-induced tachycardia as a pharmacodynamic endpoint. A recently proposed mechanism-based agonist-antagonist interaction model was used to obtain in vivo estimates of receptor affinities (K(B),(vivo)). These values were compared with in vitro affinities (K(B),(vitro)) on the basis of both total and free drug concentrations. For the total drug concentrations, the K(B),(vivo) estimates were 26, 13, 6.5 and 0.89 nM for S(-)-atenolol, S(-)-propranolol, S(-)-metoprolol and timolol. The K(B),(vivo) estimates on the basis of the free concentrations were 25, 2.0, 5.2 and 0.56 nM, respectively. The K(B),(vivo)-K(B),(vitro) correlation for total drug concentrations clearly deviated from the line of identity, especially for the most highly bound drug S(-)-propranolol (ratio K(B),(vivo)/K(B),(vitro) similar to 6.8). For the free drug, the correlation approximated the line of identity. Using this model, for beta-blockers the free plasma concentration appears to be the best predictor of in vivo pharmacodynamics. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3816-3828, 2009
Resumo:
Copper concentrate (chalcopyrite) was granulated in a rotating drum with a diameter of 0.3 m and a length of 0.2 m. Water was used as the binder and it was sprayed onto the powder bed with a nozzle. This material exhibited induction type behaviour, which was defined by Iveson and Litster [AIChE J. 44 (1998) 1510]. Induction type behaviour is characterized by the occurrence of an induction stage, during which the granules are gradually being compacted and little or no growth occurs. At the end of this induction stage, binder liquid is squeezed from the interior of the granules onto the granule surface and the granules are then surface-wet. This results in a rapid growth rate of the granules. Different types of experiments were conducted. The influence of the nozzle pressure and the distance from the nozzle to the powder bed on the growth behaviour of the granules as well as on the binder distribution was examined. The results of these experiments led to the postulation of a modified mechanism for induction type behaviour: it was found that after the binder was delivered, there were large granules containing a high amount of binder and small granules containing less binder. During the induction stage, the granules are compacted and binder liquid continuously appears at the surface of the large granules. These wet spots that are continuously being formed pick up the dry and small granules. When all the small granules have been picked up, further expulsion of binder liquid onto the granules' surface results in granules that remain surface-wet. This phenomenon marks the end of the induction stage and it coincides with the disappearance of the small granules. The hypothesis was tested by selectively removing the smaller granules during an experiment. As expected, this resulted in a shorter induction time.
Resumo:
Background: kappa-PVIIA is a 27-residue polypeptide isolated from the venom of Conus purpurascens and is the first member of a new class of conotoxins that block potassium channels. By comparison to other ion channels of eukaryotic cell membranes, voltage-sensitive potassium channels are relatively simple and methodology has been developed for mapping their interactions with small-peptide toxins, PVIIA, therefore, is a valuable new probe of potassium channel structure. This study of the solution structure and mode of channel binding of PVIIA forms the basis for mapping the interacting residues at the conotoxin-ion channel interface. Results: The three-dimensional structure of PVIIA resembles the triple-stranded beta sheet/cystine-knot motif formed by a number of toxic and inhibitory peptides. Subtle structural differences, predominantly in loops 2 and 4, are observed between PVIIA and other conotoxins with similar structural frameworks, however. Electrophysiological binding data suggest that PVIIA blocks channel currents by binding in a voltage-sensitive manner to the external vestibule and occluding the pore, Comparison of the electrostatic surface of PVIIA with that of the well-characterised potassium channel blocker charybdotoxin suggests a likely binding orientation for PVIIA, Conclusions: Although the structure of PVIIA is considerably different to that of the alpha K scorpion toxins, it has a similar mechanism of channel blockade. On the basis of a comparison of the structures of PVIIA and charybdotoxin, we suggest that Lys19 of PVIIA is the residue which is responsible for physically occluding the pore of the potassium channel.
Resumo:
Measurements of molecular weights, soluble fractions and examination of NMR spectra of bisphenol-A polysulfone, after gamma irradiation in vacuum at 150 degrees C were used to elucidate the mechanism of crosslinking. Excellent agreement was obtained between G(S) and G(X) determined from measurements above and below the gel dose when a Y-linking mechanism was assumed, whereas poor agreement was obtained when an H-link mechanism was assumed, which is the mechanism normally believed to be responsible for crosslinking. New resonances were observed in the C-13 NMX spectra of the irradiated polymer which were consistent with the formation of Y-links involving phenylene units in the backbone chain. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
This paper presents a theoretical and experimental investigation into the oxidation reactions of Si3N4-bonded SiC ceramics. Such ceramics which contain a small amount of silicon offer increased oxidation and wear resistance and are widely used as lining refractories in blast furnaces. The thermodynamics of oxidation reactions were studied using the JANAF tables. The weight gain was measured using a thermogravimetric analysis technique to study the kinetics. The temperature range of oxidation measurements is from 1073 to 1573 K and the oxidation atmosphere is water vapour, pure CO and CO-CO2 gas mixtures with various CO-to-CO2 ratios. Thermodynamic simulations showed that the oxidation mechanism of Si3N4-bonded SiC ceramics is passive oxidation and all components contribute to the formation of a silica film. The activated energies of the reactions follow the sequence Si3N4>SiC>Si. The kinetic study revealed that the oxidation of Si3N4-bonded SiC ceramics occurred in a mixed regime controlled by both interface reaction and diffusion through the silica film. Under the atmosphere conditions prevailing in the blast furnace, this ceramic is predicted to be passively oxidized with the chemical reaction rate becoming more dominant as the CO concentration increases. (C) 1998 Chapman & Hall.