878 resultados para ALLYL ISO-THIOCYANATE
Resumo:
A series of novel poly(ester-carbonate)s bearing pendant allyl ester groups P(LA-co-MAC)s were prepared by ring-opening copolymerization Of L-lactide (LA) and 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) with diethyl zinc (ZnEt2) as initiator. NMR analysis investigated the microstructure of the copolymer. DSC results indicated that the copolymers displayed a single glass-transition temperature (T-g), which was indicative of a random copolymer, and the Tg decreased with increasing carbonate content in the copolymer.
Resumo:
Four self-immobilized FI catalysts with allyl substituted phenoxy-imine ligands [{4-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2) MCl2] (1: M = Ti: 2: M = Zr), [{3-(CH2=CHCH2O)C6H5N=CH-C6H3(3-tert-C4H9)O}(2)MCl2] (3: M = Zr), [{4-(CH2=CHCH2-2,6-(iso-C3H7)(2))C6H5N=CH-C6H3(3,5-(NO2)(2))O}(2)MCl2] (4: M = Zr) have been synthesized and characterized. The molecular structure of 2 has been determined by X-ray crystallographic analysis. The results of ethylene polymerization showed that the self-immobilized titanium (IV) and zirconium (IV) catalysts 1-3 kept high activity for ethylene polymerization and 4 showed no activity. SEM showed the immobilization effect could greatly improve the morphology of polymer particles to afford micron-granula polyolefin as supported catalysts.
Resumo:
Self-immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN=C](2)(C10H6)NiBr2 [Ar = 4-allyl-2,6-(i-Pr)(2)C6H2] (1), [ArN=C(Me)[Ar'N=C(Me)]C5H3NFeCl2 [Ar = Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3, Ar = 2,6-(i-Pr)(2)C6H3, and Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN=C](2)C10H6,NiBr2 (Ar = 2,6-(i-Pr)(2)C6H2)], but also greatly improved the morphology of polymer particles to afford micron-granula polyolefin. The self-immobilization of catalysts, the formation mechanism of microspherical. polymer, and the influence on the size of the particles are discussed. The molecular structure of self-immobilized nickel catalyst 1 was also characterized by crystallographic analysis.
Resumo:
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.
Resumo:
[Ni(Ph)(PPh3)(N,O)] complexes containing phenyliminophenolato ligands (N,O) (1: N,O = A; 2: N,O = B; 3: N,O = Q 4: N,O = D; 5: N,O = E) have been synthesized and characterized. The molecular structure of 4 was determined by single-crystal X-ray analysis. Complexes 2-5 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization without the use of co-catalysts. The high ethylene polymerization activities of ca. 10(5) g.PE mol(-1) Ni.h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene could be accomplished by changing the ligand structures and reaction conditions. The self-immobilization of catalysts brings about a dramatic increase in the catalytic activities of ethylene polymerization.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Resumo:
A new family of self-immobilized ethylene polymerization catalysts, derived from neutral, single-component salicylaldiminato phenyl nickel complexes, is described.
Resumo:
Crystal and molecular structure of (2.6-dipropylphenylamide) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained from a mixture of ether/hexane as orthorhombic. with a = 12.658 (3) Angstrom. b = 16.62 (3) Angstrom. c = 11.760 (2) Angstrom. V = 2474.2 (9) Angstrom(3). Z = 4, space group Pnma. R = 0.0399; Componud I compose of the pi-bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.
Resumo:
Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.
Resumo:
The radiation-induced chain-scission and racemization of isotactic poly(methylmethacrylate)(iso-PMMA) in amorphous and semi-crystalline state as well as in solution have been studied with nuclear magnetic resonance and molar mass deter-mination. It is shown that the chain-scission is dominant for iso-PMMA in dilute solution while the racemization reaction is not favorable in this case. On the contrary, the racemization is favorable when iso-PMMA was irradiated in its crystalline state while chain-scission is not. Such experimental results could be well explained by the mobility of molecules and "cage effect". The hypothesis, we proposed previously that the chain-scission, racemization and recombination are in competition and the final result depends on the state of molecular motion at which iso-PMMA was irradiated, has been verified verified once again.
Resumo:
以全同立构聚甲基丙烯酸甲酯(iso-PMMA)为对象,用核磁共振谱和分子量测定等手段,研究了不同物理状态,即无定型固态,结晶态和稀溶液状态下的辐射裂解和辐射消旋反应.结果表明,在稀溶液状态下辐照,其裂解反应最强,而消旋反应最弱;结晶状态下辐照,则裂解反应最弱而消旋反应最强.这充分说明了分子的活动性对反应的影响,进一步验证了前已提出的高分子链断裂-重合-消旋的平衡反应机理.