950 resultados para AFT Models for Crash Duration Survival Analysis
Resumo:
A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.
Resumo:
Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
Health economic evaluations require estimates of expected survival from patients receiving different interventions, often over a lifetime. However, data on the patients of interest are typically only available for a much shorter follow-up time, from randomised trials or cohorts. Previous work showed how to use general population mortality to improve extrapolations of the short-term data, assuming a constant additive or multiplicative effect on the hazards for all-cause mortality for study patients relative to the general population. A more plausible assumption may be a constant effect on the hazard for the specific cause of death targeted by the treatments. To address this problem, we use independent parametric survival models for cause-specific mortality among the general population. Because causes of death are unobserved for the patients of interest, a polyhazard model is used to express their all-cause mortality as a sum of latent cause-specific hazards. Assuming proportional cause-specific hazards between the general and study populations then allows us to extrapolate mortality of the patients of interest to the long term. A Bayesian framework is used to jointly model all sources of data. By simulation, we show that ignoring cause-specific hazards leads to biased estimates of mean survival when the proportion of deaths due to the cause of interest changes through time. The methods are applied to an evaluation of implantable cardioverter defibrillators for the prevention of sudden cardiac death among patients with cardiac arrhythmia. After accounting for cause-specific mortality, substantial differences are seen in estimates of life years gained from implantable cardioverter defibrillators.
Resumo:
Background: Community and clinical data have suggested there is an association between trauma exposure and suicidal behavior (i.e., suicide ideation, plans and attempts). However, few studies have assessed which traumas are uniquely predictive of: the first onset of suicidal behavior, the progression from suicide ideation to plans and attempts, or the persistence of each form of suicidal behavior over time. Moreover, few data are available on such associations in developing countries. The current study addresses each of these issues. Methodology/Principal Findings: Data on trauma exposure and subsequent first onset of suicidal behavior were collected via structured interviews conducted in the households of 102,245 (age 18+) respondents from 21 countries participating in the WHO World Mental Health Surveys. Bivariate and multivariate survival models tested the relationship between the type and number of traumatic events and subsequent suicidal behavior. A range of traumatic events are associated with suicidal behavior, with sexual and interpersonal violence consistently showing the strongest effects. There is a dose-response relationship between the number of traumatic events and suicide ideation/attempt; however, there is decay in the strength of the association with more events. Although a range of traumatic events are associated with the onset of suicide ideation, fewer events predict which people with suicide ideation progress to suicide plan and attempt, or the persistence of suicidal behavior over time. Associations generally are consistent across high-, middle-, and low-income countries. Conclusions/Significance: This study provides more detailed information than previously available on the relationship between traumatic events and suicidal behavior and indicates that this association is fairly consistent across developed and developing countries. These data reinforce the importance of psychological trauma as a major public health problem, and highlight the significance of screening for the presence and accumulation of traumatic exposures as a risk factor for suicide ideation and attempt.
Resumo:
A mixture model for long-term survivors has been adopted in various fields such as biostatistics and criminology where some individuals may never experience the type of failure under study. It is directly applicable in situations where the only information available from follow-up on individuals who will never experience this type of failure is in the form of censored observations. In this paper, we consider a modification to the model so that it still applies in the case where during the follow-up period it becomes known that an individual will never experience failure from the cause of interest. Unless a model allows for this additional information, a consistent survival analysis will not be obtained. A partial maximum likelihood (ML) approach is proposed that preserves the simplicity of the long-term survival mixture model and provides consistent estimators of the quantities of interest. Some simulation experiments are performed to assess the efficiency of the partial ML approach relative to the full ML approach for survival in the presence of competing risks.
Resumo:
Background/Aims: Statistical analysis of age-at-onset involving family data is particularly complicated because there is a correlation pattern that needs to be modeled and also because there are measurements that are censored. In this paper, our main purpose was to evaluate the effect of genetic and shared family environmental factors on age-at-onset of three cardiovascular risk factors: hypertension, diabetes and high cholesterol. Methods: The mixed-effects Cox model proposed by Pankratz et al. [2005] was used to analyze the data from 81 families, involving 1,675 individuals from the village of Baependi, in the state of Minas Gerais, Brazil. Results: The analyses performed showed that the polygenic effect plays a greater role than the shared family environmental effect in explaining the variability of the age-at-onset of hypertension, diabetes and high cholesterol. The model which simultaneously evaluated both effects indicated that there are individuals which may have risk of hypertension due to polygenic effects 130% higher than the overall average risk for the entire sample. For diabetes and high cholesterol the risks of some individuals were 115 and 45%, respectively, higher than the overall average risk for the entire population. Conclusions: Results showed evidence of significant polygenic effects indicating that age-at-onset is a useful trait for gene mapping of the common complex diseases analyzed. In addition, we found that the polygenic random component might absorb the effects of some covariates usually considered in the risk evaluation, such as gender, age and BMI. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Matemática)
Resumo:
Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.
Resumo:
BACKGROUND/AIMS: Alveolar echinococcosis (AE) is a serious liver disease. The aim of this study was to explore the long-term prognosis of AE patients, the burden of this disease in Switzerland and the cost-effectiveness of treatment. METHODS: Relative survival analysis was undertaken using a national database with 329 patient records. 155 representative cases had sufficient details regarding treatment costs and patient outcome to estimate the financial implications and treatment costs of AE. RESULTS: For an average 54-year-old patient diagnosed with AE in 1970 the life expectancy was estimated to be reduced by 18.2 and 21.3 years for men and women, respectively. By 2005 this was reduced to approximately 3.5 and 2.6 years, respectively. Patients undergoing radical surgery had a better outcome, whereas the older patients had a poorer prognosis than the younger patients. Costs amount to approximately Euro108,762 per patient. Assuming the improved life expectancy of AE patients is due to modern treatment the cost per disability-adjusted life years (DALY) saved is approximately Euro6,032. CONCLUSIONS: Current treatments have substantially improved the prognosis of AE patients compared to the 1970s. The cost per DALY saved is low compared to the average national annual income. Hence, AE treatment is highly cost-effective in Switzerland.