969 resultados para ACTIVE-SITE MUTANT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two CO-isotope sensitive lines have been detected in the overtone region of the resonance Raman spectra of CO-bound hemeproteins. One line is assigned as the overtone of the Fe-CO stretching mode and is located in the 1000- to 1070-cm-1 region. The other line is found in the 1180- to 1210-cm-1 region and is assigned as a combination between a porphyrin mode, nu 7, and the Fe-CO stretching mode. The high intensities of these lines, which in the terminal oxidase class of proteins are of the same order as those of the fundamental stretching mode, indicate that the mechanism of enhancement for modes involving the Fe-CO moiety is different from that for the modes of the porphyrin macrocycle and call for reexamination of Raman theory of porphyrins as applied to axial ligands. The anharmonicity of the electronic potential function was evaluated, revealing that in the terminal oxidases the anharmonicity is greater than in the other heme proteins that were examined, suggesting a distinctive interaction of the bound CO with its distal environment in this family. Furthermore, the anharmonicity correlates with the frequency of the C-O stretching mode, demonstrating that both of these parameters are sensitive to the Fe-CO bond energy. The overtone and combination lines involving the bound CO promise to be additional probes of heme protein structural properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and P) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDHY236F protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDHWT, the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDHY236F also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDHY236F. The crystal structure of SDHY236F clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface environment and structural evolution of silica supported phosphotungstic acid (H3PW12O40) catalysts have been investigated as a function of acid loading. H3PW12O40 clusters are deposited intact upon the silica surface, adopting a Stranksi-Krastanov growth mode forming a two-dimensional adlayer which saturates at 45wt% acid. Intimate contact with the silica support perturbs the local chemical environment of three tungstate centres, which become inequivalent with those in the remaining cluster, suggesting an adsorption mode involving three terminal W==O groups. Above the monolayer, H3PW12O40 clusters form three-dimensional crystallites with physico-chemical properties indistinguishable from those in the bulk heteropoly acid. These H3PW12O40/SiO2 materials are efficient for the solventless isomerisation of α-pinene under mild reaction conditions. Activity scales directly with the number of accessible perturbed tungstate sites at the silica interface; these are the active species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we demonstrate the first application of time-resolved synchrotron X-ray absorption spectroscopy to simultaneously follow dynamic nanoparticle surface restructuring and the evolution of surface and gas-phase products during an organic reaction. Surface palladium oxide, and not metal, is identified as the catalytic species responsible for the selective oxidation (selox) of crotyl alcohol to crotonaldehyde. Elevated reaction temperatures facilitate reversible nanoparticle redox processes, and concomitant catalytic selectivity loss, in response to reaction conditions. These discoveries highlight the importance of stabilizing surface palladium oxide and minimizing catalyst reducibility in order to achieve high selox yields, and will aid the future design of Pd-derived selox catalysts. This discovery has important implications for the design of future liquid and vapor phase selox catalysts, and the thermochemical behavior of Pd nanostructures in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of the active site in the Pd-catalysed aerobic selective oxidation of cinnamyl and crotyl alcohols has been directly probed by bulk and surface X-ray techniques. The importance of high metal dispersions and the crucial role of surface palladium oxide have been identified. © The Royal Society of Chemistry 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing concern about the depletion of oil has spurred worldwide interest in finding alternative feedstocks for important petrochemical commodities and fuels. On the one hand, the enormous re-serves found (208 trillion cubic feet proven1), environmental sustainability and lower overall costs point to natural gas as the primary source for energy and chemicals in the near future.2 Nowadays the transformation of methane into useful chemicals and liquid fuels is only feasible via synthesis gas, a mixture of molecular hydrogen and carbon monoxide, that is further transformed to methanol or to hydrocarbons under moderate reaction conditions (150-350 °C and 10-100 bar).3 For a major cost reduction and in order to valorize small natural gas sources, either more efficient "syngas to products" catalysts should be produced or the manner in which methane is initially activated should be changed, ideally by developing catalysts able to directly oxidize methane to interesting products such as methanol. On the other hand, from the point of view of CO2 emissions, the use of the re-maining fossil resources will further contribute to global warming. In this scenario, the development of efficient routes for the transformation of CO2 into useful chemicals and fuels would represent a considerable step forward towards sustainability. Indeed, the environmental and economic incen-tives to develop processes for the conversion of CO2 into fuels and chemicals are great. However, for such conversions to become economically feasible, considerable research is necessary. In this lecture we will summarize our recent efforts into the design of new catalytic systems, based on MOFs and COFs, to address these challenges. Examples include the development of new Fe based FTS catalysts, electrocatalysts for the selective conversion of CO2 into syngas, the development of efficient catalysts for the utilization of formic acid as hydrogen storage vector and the development of new enzyme inspired systems for the direct transformation of methane to methanol under mild reaction conditions. References (1) http://www.clearonmoney.com/dw/doku.php?id=public:natural_gas_reserves. (2) Derouane, E. G.; Parmon, V.; Lemos, F.; Ribeiro, F. R. Sustainable Strategies for the Up-grading of Natural Gas: Fundamentals, Challenges, and Opportunities; Springer, 2005. (3) Rofer-DePoorter, C. K. Chemical Reviews. ACS Publications 1981, pp 447–474.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 angstrom resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi beta-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.