955 resultados para ACQUIRED ACID RESISTANCE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Medicinal plants bave gained a special attention in the last years, due to its renowned health benefits, such as antimicrobial effects [I]. In fact, several natural matrices bave been increasingly studied, namely for its antifungal activity against opportunistic fungi [2,3]. Candida species, although commensa! microorganisms, have caused severe organic dysfunctions to the host, once current antifungal agents have lost their recognized efficiency [2]. So, numerous studies have been carried out focusing the mechanisms of acquired drug-resistance by Candida species [acidal effects, and therefore, the involved mechanisms of action need to be clarified. Thus, in the present study these modes of action were assessed, by using flow cytometry.Overall, the licorice extract induced significant and irreversible primary damages on Candida cells, being membrane disruption and consequent unviability one of the main targets. In fact, after membrane destabilization, cells lost their proper homeostasis, their metabolic functions were blocked and, consequently cells lost functionality. The relevance and interest of the achieved results open new insights towards the upcorning use of the present phenolic matrix, being important to evaluate its in viva efficacy. Therefore, further studies are necessary to deepen knowledge on this field, aiming not only to establish therapeutic and prophylactic doses, but also to improve the clinical intervention in Candida infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

ABSTRACT Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg-induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae-infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg-induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Exposure of Arabidopsis thaliana to ozone results in the expression of a number of defense-related genes that are also induced during a hypersensitive response. A potential common link between the activation of defense gene expression during a hypersensitive response and by ozone treatment is the production of active oxygen species and the accumulation of hydrogen peroxide. Here we report that salicylic acid accumulation, which can be induced by hydrogen peroxide and is required for the expression of both a hypersensitive response and systemic acquired resistance, is also required for the induction of some, but not all, ozone-induced mRNAs examined. In addition, we show that ozone exposure triggers induced resistance of A. thaliana to infection with virulent phytopathogenic Pseudomonas syringae strains. Infection of transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of salicylic acid, or npr1 mutant plants, which are defective in the expression of systemic acquired resistance at a step downstream of salicylic acid, demonstrated that the signaling pathway activated during ozone-induced resistance overlaps with the systemic acquired resistance activation pathway and is salicylic acid dependent. Interestingly, plants expressing salicylate hydroxylase exhibited increased sensitivity to ozone exposure. These results demonstrate that ozone activates at least two distinct signaling pathways, including a salicylic acid dependent pathway previously shown to be associated with the activation of pathogen defense reactions, and that this latter pathway also induces a protective response to ozone.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is an important component of plant defense against pathogen infection. Accumulation of salicylic acid (SA) is required for the induction of SAR. However, SA is apparently not the translocated signal but is involved in transducing the signal in target tissues. Interestingly, SA accumulation is not required for production and release of the systemic signal. In addition to playing a pivotal role in SAR signal transduction, SA is important in modulating plant susceptibility to pathogen infection and genetic resistance to disease. It has been proposed that SA inhibition of catalase results in H2O2 accumulation and that therefore H2O2 serves as a second messenger in SAR signaling. We find no accumulation of H2O2 in tissues expressing SAR; thus the role of H2O2 in SAR signaling is questionable.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study compares in vitro antimicrobial resistance development between strains of Staphylococcus aureus including newly described community-acquired methicillin-resistant strains (CA-MRSA). High-level resistance developed in all strains of S. aureus after exposure to rifampicin and gentamicin and in some strains after fusidic acid exposure, independent of methicillin resistance phenotype. Resistance did not develop after exposure to clindamycin, cotrimoxazole, ciprofloxacin, linezolid, or vancomycin. These results have important implications for therapy of CA-MRSA infections. (C) 2004 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This trial was carried out in Piracicaba, Sao Paulo State. Brazil. to comparatively evaluate the degree of resistance to naturally acquired gastrointestinal nematode infections in sheep of the following genetic groups purebred Santa Ines (SI), SI crossbred with Dorper (DO x SI), lie de France (IF x SI), Suffolk (SU x SI), and Texel (TE < SI) Fifteen ewes from each group were raised indoors until 12 months of age. At this age, they were moved to pasture that was naturally contaminated by nematode infective larvae and were evaluated from December to May. 2007. Rainfall ranged from 267 mm in January to 37 mm in April Maximum and minimum mean temperatures ranged from 32 5 degrees C to 19 0 degrees C in March and from 25.9 degrees C to 12.8 degrees C in May. There was an increase in the mean number of eggs per gram of feces (EPG) after animals were placed on pasture with significant difference between the SI (80 EPG) and IF x SI (347 EPG) groups in January: and the DO x SI (386 EPG) and TE x SI (258 EPG) groups in May. The highest mean fecal egg count (FEC), 2073 EPG, was recorded for the TE x SI group in February. All groups showed a progressive reduction in body weight throughout the experiment of 12.0% (TE x SI) to 15.9% (SU x SI). In general. the animals with the highest FEC presented the lowest packed cell volumes (PCV): the highest correlation coefficient between FEC x PCV occurred in the SU x SI sheep in January (r = -0.70; P < 0.01). Similarly, there was an inverse relationship between FEC and blood eosinophil Values, with the highest correlation coefficient in the TE x SI sheep in February (r = -0.64; P < 0.05). Immunoglobulin G (IgG) levels against Haemonchus contortus antigens increased in all groups as a result of the exposure to parasites and remained relatively constant until the end of the study, with the exceptions of SU x SI and TE x SI, which showed a rise in IgG levels during the last sampling that coincided with a reduction in mean FEC. In conclusion. crossbreeding Santa Ines sheep with any of the breeds evaluated can result in a production increase and the maintenance of a satisfactory degree of infection resistance, especially against H. contortus and Trichostrongylus colubriformis. the major nematodes detected in this flock. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A plausible approach to evaluate the inhibitory action of antifungals is through the investigation of the fungal resistance to these drugs. We describe here the molecular cloning and initial characterization of the A. nidulans lipA gene, where mutation (lipA1) conferred resistance to undecanoic acid, the most fungitoxic fatty acid in the C(7:0)-C(18:0) series. The lipA gene codes for a putative lipase with the sequence consensus GVSIS and WIFGGG as the catalytic signature. Comparison of the wild-type and LIP1 mutant strain nucleotide sequences showed a G -> A change in lipA1 allele, which results in a Glu(214) -> Lys substitution in LipA protein. This ionic charge change in a conserved LipA region, next to its catalytic site, may have altered the catalytic properties of this enzyme resulting in resistance to undecanoic acid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated treatment of mango (Mangifera indica L.) fruit with 2 host defence-promoting compounds for suppression of anthracnose disease (Colletotrichum gloeosporioides). Cultivar 'Kensington Pride' fruit were treated at concentrations of up to 1000 mg/L with either potassium phosphonate or salicylic acid. Applications were by various combinations of pre- and postharvest dips and vacuum infiltration. Postharvest treatments at up to 2000 mg/L salicylic acid were evaluated in a second fruiting season. Fruit were either uninoculated or inoculated with the fungal pathogen. Colour, firmness and disease-severity were assessed during shelf life at 23 degreesC. There were no significant (P>0.05) effects of potassium phosphonate or salicylic acid on anthracnose disease severity in the first season. Moreover, phosphonate or salicylic acid treatment did not significantly affect fruit colour or firmness changes. There were significant (P