963 resultados para ACCRETION DISCS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the oscillator strengths of the optical transitions of the vertically stacked self-assembled InAs quantum discs. The oscillator strengths change evidently when the two quantum discs are far apart from each other. A vertically applied electric held affects the oscillator strengths severely, while the oscillator strengths change slowly as the radius of one disc increases. We also studied the excitonic energy of the system, including the Coulomb interaction. The excitonic energy increases with the increasing radius of one disc, but decreases as a vertically applied electric field increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We study the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (100 K) inner region of protoplanetary disks.
Methods. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly by the evaporation of warm ice mantles, to demonstrate how its abundance profile and line emission depend on the accretion flow.
Results. Our results indicate that some evaporated molecules retain high abundances only when the accretion velocity is sufficiently high, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of 10 AU.