136 resultados para Aération artificielle
Resumo:
Ce mémoire traite d'abord du problème de la modélisation de l'interprétation des pianistes à l'aide de l'apprentissage machine. Il s'occupe ensuite de présenter de nouveaux modèles temporels qui utilisent des auto-encodeurs pour améliorer l'apprentissage de séquences. Dans un premier temps, nous présentons le travail préalablement fait dans le domaine de la modélisation de l'expressivité musicale, notamment les modèles statistiques du professeur Widmer. Nous parlons ensuite de notre ensemble de données, unique au monde, qu'il a été nécessaire de créer pour accomplir notre tâche. Cet ensemble est composé de 13 pianistes différents enregistrés sur le fameux piano Bösendorfer 290SE. Enfin, nous expliquons en détail les résultats de l'apprentissage de réseaux de neurones et de réseaux de neurones récurrents. Ceux-ci sont appliqués sur les données mentionnées pour apprendre les variations expressives propres à un style de musique. Dans un deuxième temps, ce mémoire aborde la découverte de modèles statistiques expérimentaux qui impliquent l'utilisation d'auto-encodeurs sur des réseaux de neurones récurrents. Pour pouvoir tester la limite de leur capacité d'apprentissage, nous utilisons deux ensembles de données artificielles développées à l'Université de Toronto.
Resumo:
La traduction statistique vise l’automatisation de la traduction par le biais de modèles statistiques. Dans ce travail, nous relevons un des grands défis du domaine : la recherche (Brown et al., 1993). Les systèmes de traduction statistique de référence, tel Moses (Koehn et al., 2007), effectuent généralement la recherche en explorant l’espace des préfixes par programmation dynamique, une solution coûteuse sur le plan computationnel pour ce problème potentiellement NP-complet (Knight, 1999). Nous postulons qu’une approche par recherche locale (Langlais et al., 2007) peut mener à des solutions tout aussi intéressantes en un temps et un espace mémoire beaucoup moins importants (Russell et Norvig, 2010). De plus, ce type de recherche facilite l’incorporation de modèles globaux qui nécessitent des traductions complètes et permet d’effectuer des modifications sur ces dernières de manière non-continue, deux tâches ardues lors de l’exploration de l’espace des préfixes. Nos expériences nous révèlent que la recherche locale en traduction statistique est une approche viable, s’inscrivant dans l’état de l’art.
Resumo:
Récemment, nous avons pu observer un intérêt grandissant pour l'application de l'analogie formelle à l'analyse morphologique. L'intérêt premier de ce concept repose sur ses parallèles avec le processus mental impliqué dans la création de nouveaux termes basée sur les relations morphologiques préexistantes de la langue. Toutefois, l'utilisation de ce concept reste tout de même marginale due notamment à son coût de calcul élevé.Dans ce document, nous présenterons le système à base de graphe Moranapho fondé sur l'analogie formelle. Nous démontrerons par notre participation au Morpho Challenge 2009 (Kurimo:10) et nos expériences subséquentes, que la qualité des analyses obtenues par ce système rivalise avec l'état de l'art. Nous analyserons aussi l'influence de certaines de ses composantes sur la qualité des analyses morphologiques produites. Nous appuierons les conclusions tirées de nos analyses sur des théories bien établies dans le domaine de la linguistique. Ceci nous permet donc de fournir certaines prédictions sur les succès et les échecs de notre système, lorsqu'appliqué à d'autres langues que celles testées au cours de nos expériences.
Resumo:
Cette thèse porte sur une classe d'algorithmes d'apprentissage appelés architectures profondes. Il existe des résultats qui indiquent que les représentations peu profondes et locales ne sont pas suffisantes pour la modélisation des fonctions comportant plusieurs facteurs de variation. Nous sommes particulièrement intéressés par ce genre de données car nous espérons qu'un agent intelligent sera en mesure d'apprendre à les modéliser automatiquement; l'hypothèse est que les architectures profondes sont mieux adaptées pour les modéliser. Les travaux de Hinton (2006) furent une véritable percée, car l'idée d'utiliser un algorithme d'apprentissage non-supervisé, les machines de Boltzmann restreintes, pour l'initialisation des poids d'un réseau de neurones supervisé a été cruciale pour entraîner l'architecture profonde la plus populaire, soit les réseaux de neurones artificiels avec des poids totalement connectés. Cette idée a été reprise et reproduite avec succès dans plusieurs contextes et avec une variété de modèles. Dans le cadre de cette thèse, nous considérons les architectures profondes comme des biais inductifs. Ces biais sont représentés non seulement par les modèles eux-mêmes, mais aussi par les méthodes d'entraînement qui sont souvent utilisés en conjonction avec ceux-ci. Nous désirons définir les raisons pour lesquelles cette classe de fonctions généralise bien, les situations auxquelles ces fonctions pourront être appliquées, ainsi que les descriptions qualitatives de telles fonctions. L'objectif de cette thèse est d'obtenir une meilleure compréhension du succès des architectures profondes. Dans le premier article, nous testons la concordance entre nos intuitions---que les réseaux profonds sont nécessaires pour mieux apprendre avec des données comportant plusieurs facteurs de variation---et les résultats empiriques. Le second article est une étude approfondie de la question: pourquoi l'apprentissage non-supervisé aide à mieux généraliser dans un réseau profond? Nous explorons et évaluons plusieurs hypothèses tentant d'élucider le fonctionnement de ces modèles. Finalement, le troisième article cherche à définir de façon qualitative les fonctions modélisées par un réseau profond. Ces visualisations facilitent l'interprétation des représentations et invariances modélisées par une architecture profonde.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.
Resumo:
Il est connu que les problèmes d'ambiguïté de la langue ont un effet néfaste sur les résultats des systèmes de Recherche d'Information (RI). Toutefois, les efforts de recherche visant à intégrer des techniques de Désambiguisation de Sens (DS) à la RI n'ont pas porté fruit. La plupart des études sur le sujet obtiennent effectivement des résultats négatifs ou peu convaincants. De plus, des investigations basées sur l'ajout d'ambiguïté artificielle concluent qu'il faudrait une très haute précision de désambiguation pour arriver à un effet positif. Ce mémoire vise à développer de nouvelles approches plus performantes et efficaces, se concentrant sur l'utilisation de statistiques de cooccurrence afin de construire des modèles de contexte. Ces modèles pourront ensuite servir à effectuer une discrimination de sens entre une requête et les documents d'une collection. Dans ce mémoire à deux parties, nous ferons tout d'abord une investigation de la force de la relation entre un mot et les mots présents dans son contexte, proposant une méthode d'apprentissage du poids d'un mot de contexte en fonction de sa distance du mot modélisé dans le document. Cette méthode repose sur l'idée que des modèles de contextes faits à partir d'échantillons aléatoires de mots en contexte devraient être similaires. Des expériences en anglais et en japonais montrent que la force de relation en fonction de la distance suit généralement une loi de puissance négative. Les poids résultant des expériences sont ensuite utilisés dans la construction de systèmes de DS Bayes Naïfs. Des évaluations de ces systèmes sur les données de l'atelier Semeval en anglais pour la tâche Semeval-2007 English Lexical Sample, puis en japonais pour la tâche Semeval-2010 Japanese WSD, montrent que les systèmes ont des résultats comparables à l'état de l'art, bien qu'ils soient bien plus légers, et ne dépendent pas d'outils ou de ressources linguistiques. La deuxième partie de ce mémoire vise à adapter les méthodes développées à des applications de Recherche d'Information. Ces applications ont la difficulté additionnelle de ne pas pouvoir dépendre de données créées manuellement. Nous proposons donc des modèles de contextes à variables latentes basés sur l'Allocation Dirichlet Latente (LDA). Ceux-ci seront combinés à la méthodes de vraisemblance de requête par modèles de langue. En évaluant le système résultant sur trois collections de la conférence TREC (Text REtrieval Conference), nous observons une amélioration proportionnelle moyenne de 12% du MAP et 23% du GMAP. Les gains se font surtout sur les requêtes difficiles, augmentant la stabilité des résultats. Ces expériences seraient la première application positive de techniques de DS sur des tâches de RI standard.
Resumo:
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
Resumo:
La technique de clonage par transfert nucléaire de cellules somatiques (SCNT) présente une page importante dans les annales scientifiques, mais son application pratique demeure incertaine dû à son faible taux de succès. Les anomalies placentaires et de développement fœtal se traduisent par des pertes importantes de gestation et des mortalités néonatales. Dans un premier temps, la présente étude a caractérisé les changements morphologiques des membranes fœtales durant la gestation clonée en les comparant à des gestations contrôles obtenues à partir de l’insémination artificielle. Les différentes anomalies morphologiques des placentomes telles que l’œdème chorioallantoique, la présence de zones hyperéchoiques et irrégulières dans la membrane amniotique et la présence de cellules inflammatoires dégénérées compromettent le développement fœtal normal de la gestation clonée. L’examen ultrasonographique représente une technique diagnostique importante pour faire le suivi d’une gestation et de caractériser les changements placentaires dans le cadre d’évaluation globale du bien-être fœtal. Le profil hormonal de trois stéroïdes (progestérone (P4), estrone sulfate (E1S), et œstradiol (E2)) et de la protéine B spécifique de gestation (PSPB) dans le sérum des vaches porteuses de clones SCNT a été déterminé et associé aux anomalies de gestations clonées. Une diminution de la P4 sérique au jour 80, une élévation du niveau de la concentration de la PSPB au jour 150, et une augmentation de la concentration d’E2 sérique durant le deuxième et troisième tiers de la gestation clonée coïncident avec les anomalies de gestation déjà reportées. Ces changements du profil hormonal associés aux anomalies phénotypiques du placenta compromettent le déroulement normal de la gestation clonée et gênent le développement et le bien-être fœtal. Sur la base des observations faites sur le placenta de gestation clonée, le mécanisme moléculaire pouvant expliquer la disparition de l’épithélium du placenta (l’interface entre le tissue maternel et le placenta) a été étudié. L’étude a identifié des changements dans l’expression de deux protéines d’adhérence (E-cadhérin et β-catenin) de cellules épithéliales pouvant être associées aux anomalies du placenta chez les gestations clonées. Le tissu de cotylédons provenant de gestations clonées et contrôles a été analysé par Western blot, RT-PCR quantitatif, et par immunohistochimie. Les résultats présentaient une diminution significative (p<0.05) de l’expression des dites protéines dans les cellules trophoblastiques chez les gestations clonées. Le RT-PCR quantitatif démontrait que les gènes CCND1, CLDN1 et MSX1 ciblés par la voie de signalisation de la Wnt/β-catenin étaient significativement sous exprimés. La diminution de l’expression des protéines E-cadherin et β-catenin avec une réduction de l’activation de la protéine β-catenin durant le période d’attachement de l’embryon peut potentiellement expliquer l’absence totale ou partielle de l’attachement des membranes fœtales au tissu maternel et éventuellement, l’insuffisance placentaire caractéristique des gestations clonées chez la vache. La caractérisation morphologique et fonctionnelle du placenta durant les gestations clonées à haut risque est essentielle pour évaluer le statut de la gestation. Les résultats de la présente étude permettront de prédire le développement et le bien-être fœtal de façon critique à travers un protocole standardisé et permettre des interventions médicales pour améliorer le taux de succès des gestations clonées chez les bovins.
Resumo:
L’annotation en rôles sémantiques est une tâche qui permet d’attribuer des étiquettes de rôles telles que Agent, Patient, Instrument, Lieu, Destination etc. aux différents participants actants ou circonstants (arguments ou adjoints) d’une lexie prédicative. Cette tâche nécessite des ressources lexicales riches ou des corpus importants contenant des phrases annotées manuellement par des linguistes sur lesquels peuvent s’appuyer certaines approches d’automatisation (statistiques ou apprentissage machine). Les travaux antérieurs dans ce domaine ont porté essentiellement sur la langue anglaise qui dispose de ressources riches, telles que PropBank, VerbNet et FrameNet, qui ont servi à alimenter les systèmes d’annotation automatisés. L’annotation dans d’autres langues, pour lesquelles on ne dispose pas d’un corpus annoté manuellement, repose souvent sur le FrameNet anglais. Une ressource telle que FrameNet de l’anglais est plus que nécessaire pour les systèmes d’annotation automatisé et l’annotation manuelle de milliers de phrases par des linguistes est une tâche fastidieuse et exigeante en temps. Nous avons proposé dans cette thèse un système automatique pour aider les linguistes dans cette tâche qui pourraient alors se limiter à la validation des annotations proposées par le système. Dans notre travail, nous ne considérons que les verbes qui sont plus susceptibles que les noms d’être accompagnés par des actants réalisés dans les phrases. Ces verbes concernent les termes de spécialité d’informatique et d’Internet (ex. accéder, configurer, naviguer, télécharger) dont la structure actancielle est enrichie manuellement par des rôles sémantiques. La structure actancielle des lexies verbales est décrite selon les principes de la Lexicologie Explicative et Combinatoire, LEC de Mel’čuk et fait appel partiellement (en ce qui concerne les rôles sémantiques) à la notion de Frame Element tel que décrit dans la théorie Frame Semantics (FS) de Fillmore. Ces deux théories ont ceci de commun qu’elles mènent toutes les deux à la construction de dictionnaires différents de ceux issus des approches traditionnelles. Les lexies verbales d’informatique et d’Internet qui ont été annotées manuellement dans plusieurs contextes constituent notre corpus spécialisé. Notre système qui attribue automatiquement des rôles sémantiques aux actants est basé sur des règles ou classificateurs entraînés sur plus de 2300 contextes. Nous sommes limités à une liste de rôles restreinte car certains rôles dans notre corpus n’ont pas assez d’exemples annotés manuellement. Dans notre système, nous n’avons traité que les rôles Patient, Agent et Destination dont le nombre d’exemple est supérieur à 300. Nous avons crée une classe que nous avons nommé Autre où nous avons rassemblé les autres rôles dont le nombre d’exemples annotés est inférieur à 100. Nous avons subdivisé la tâche d’annotation en sous-tâches : identifier les participants actants et circonstants et attribuer des rôles sémantiques uniquement aux actants qui contribuent au sens de la lexie verbale. Nous avons soumis les phrases de notre corpus à l’analyseur syntaxique Syntex afin d’extraire les informations syntaxiques qui décrivent les différents participants d’une lexie verbale dans une phrase. Ces informations ont servi de traits (features) dans notre modèle d’apprentissage. Nous avons proposé deux techniques pour l’identification des participants : une technique à base de règles où nous avons extrait une trentaine de règles et une autre technique basée sur l’apprentissage machine. Ces mêmes techniques ont été utilisées pour la tâche de distinguer les actants des circonstants. Nous avons proposé pour la tâche d’attribuer des rôles sémantiques aux actants, une méthode de partitionnement (clustering) semi supervisé des instances que nous avons comparée à la méthode de classification de rôles sémantiques. Nous avons utilisé CHAMÉLÉON, un algorithme hiérarchique ascendant.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don- nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu- rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits profonds, des concepts "abstraits" sont appris automatiquement. Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds, de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont la classification et le débruitement d’images quasi binaires. On permettra une rétroac- tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation, des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous présentons deux familles d’architectures, l’une, l’architecture complètement connectée, pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées sont des images, principalement des images de chiffres manuscrits. Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et visuels en terme de performance de reconstruction en ajoutant l’influence des couches supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés. On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre architecture, même si sa connectivité est contrainte.
Resumo:
Contexte : Pour favoriser l’allaitement, la Condition 3 de l’Initiative des amis des bébés (IAB) (OMS / UNICEF) vise à offrir une information complète aux femmes enceintes. Or, cette condition est implantée de façon variable dans les CLSC de Montréal car les intervenants de la santé ne semblent pas confortables à faire la promotion de l’allaitement en prénatal, surtout dans les milieux « québécois » et défavorisés. Objectif : Explorer les expériences personnelles et professionnelles des infirmières en santé communautaire qui sont reliées à la promotion de l’allaitement en prénatal en milieu défavorisé. Dans la présente étude, les informations moins souvent transmises, soit les risques du non-allaitement ainsi que la recommandation de poursuite de l’allaitement jusqu’à deux ans ou au-delà, ont été examinées. Méthodologie : La collecte des données de cette recherche qualitative s’est effectuée auprès d’infirmières de huit CLSC montréalais offrant des services à une population importante de femmes défavorisées, francophones, nées au Canada et ce, sous forme d’entrevues individuelles (n=12 infirmières) et d’entrevues de groupe (n=36 infirmières). Résultats : Les principaux facteurs favorables au niveau de confort des infirmières à faire la promotion de l’allaitement sont d’avoir suivi 20 heures ou plus de formation en allaitement dans les cinq dernières années, et d’avoir des croyances profondes positives quant à la valeur de l’allaitement comparativement aux préparations commerciales pour nourrissons (PCN). Craindre de susciter la culpabilité nuit à la promotion de l’allaitement. De plus, les infirmières exposées à la culture d’allaitement pendant l’enfance, ayant eu une expérience personnelle d’allaitement positive, qui perçoivent que leur rôle est d’encourager les mères à allaiter, ou qui recommandent rarement de donner des PCN en postnatal en cas de problèmes d’allaitement, sont plus confortables à informer les femmes enceintes des risques du non-allaitement. Conclusion : Plusieurs infirmières semblent manquer de connaissances sur la qualité supérieure de l’allaitement par rapport à l’alimentation artificielle et sur les risques du non-allaitement. De plus, il semble que plusieurs infirmières n’aient pas les habiletés cliniques optimales pour soutenir les mères dans leur allaitement. Des formations appropriées aideraient les infirmières à avoir davantage confiance dans leur capacité à soutenir les mères en postnatal, ainsi qu’à promouvoir l’allaitement en prénatal. Finalement, les infirmières devraient prendre conscience de leurs biais personnels, afin d’en réduire les impacts négatifs sur leur pratique professionnelle.
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
En 2010, les écrans du Québec étaient occupés par des films américains dans une proportion de 78,4 %. Ce mémoire veut mettre en lumière les mécanismes de la distribution de films au Québec et la responsabilité des distributeurs dans l'offre cinématographique nationale. Après avoir décrit les cinq étapes de la fabrication d'un film, nous dressons l'inventaire des politiques fédérales et provinciales qui régissent la distribution au Québec. Nous établissons ensuite des parallèles entre les politiques nationales et celles de pays de l'Union européenne afin de considérer comment et pourquoi, pour protéger leur identité « de la déferlante américaine », ces pays tentent de réglementer l'industrie cinématographique. Par la suite, nous observons quel est le rôle de la distribution dans la filière économique en général et dans l'industrie québécoise du cinéma en particulier à travers une série d'entrevues semi-dirigées avec les principaux protagonistes du milieu. Nous nous intéressons subséquemment à l'avenir de la distribution cinématographique relativement à la dématérialisation des images et du son. Finalement, nous concluons que le menu cinématographique québécois est composé par le positionnement des distributeurs américains et québécois en réponse à une demande artificielle des consommateurs reflétée par la billetterie (box-office); positionnement légitimé par les politiques gouvernementales.
Resumo:
A partir des résultats d’une enquête effectuée en 2005 sur un échantillon de 203 dirigeants publics, une typologie floue de trois profils a été dégagée en vue de concevoir un système d’affectation des dirigeants en fonction de leur style du leadership, sens du travail, et leurs préoccupations de gestion des ressources humaines. En se basant sur cette typologie floue, des techniques empruntées à l’intelligence artificielle ont été appliquées pour apprendre des règles de classification. Ces techniques sont au nombre de quatre : le réseau neuronal (Neural Network), l’algorithme génétique (Genetic Algorithm), l’arbre de décision (Decision Tree) et la théorie des ensembles approximatifs (Rough Sets). Les résultats de l’étude ainsi que ses perspectives seront présentées et discutés tout au long de cette communication.