909 resultados para 69-504


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleomagnetic and rock magnetic measurements of basalt specimens from DSDP Hole 504B, associated with the Costa Rica Rift, have a mean natural remanence intensity (Jn) between 5 and 10 x 10**-3 gauss, consistent with the presence of a magnetized layer that is 0.5 to 1 km thick, which produces the observed magnetic anomalies. A mean Koenigsberger ratio (Qn) greater than 10 indicates that the remanence dominates the magnetic signal of the drilled section. The susceptibility (x) increases with depth, and the median demagnetizing field (MDF) decreases with increasing depth in Hole 504B, congruent with the downhole increase in the relative abundance of massive flow units. Hole 504B is composed of at least 12 units with distinct stable average inclinations (Is), which probably represent extrusion at times of different geomagnetic field directions and possibly also the effects of faulting. The thickness of basalt associated with these inclination units varies from less than 9 meters to possibly as much as 160 meters. Two relatively thick magnetic units (40 m and 45 m, separated by 100 m) have anomalously high Is values of -53° and -63°, in contrast with the near zero inclinations expected for the equatorial latitude of Site 504. For this reason and because the average inclination of all the magnetic units is skewed to a negative value, it might be that the entire section at Hole 504B was tilted by approximately 30°.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.