947 resultados para 67-495


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plasticity characteristics of the Quaternary sediments of the Guatemalan continental margin were determined from five sites drilled during Leg 67 of the Deep Sea Drilling Project. The 64 samples analyzed are from various marine environments, including the Cocos Plate, Middle America Trench, and the trench lower slope to midslope of the Guatemalan continental slope. The sediments are primarily hemipelagic muds and trench-fill turbidites and include quantities of siliceous and calcareous biogenic components. The sediments are generally classified as organic clays of medium to high plasticity, containing micaceous sands and silts, with 14% classed as inorganic clays of medium to high plasticity. High sedimentation rates in Quaternary sediments are the result, in part, of sediment gravity flows that depend upon rheological properties, i.e., sediment plasticity. Mudflows and cohesive debris flows appear to be significant downslope transport mechanisms in these highly plastic sediments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seven sites were drilled during Leg 67 along a transect across the Middle America Trench off Guatemala: four (Sites 494, 496, 497, and 498) on continental slope, two (Sites 499 and 500) on Trench floor, and one (Site 495) on the Cocos Plate. We studied the mineralogy of sediments from Sites 494, 495, 496, 499, and 500. Our objective was to investigate the origin and source of separate minerals and mineral assemblages, giving special attention to the influence of the alteration of basalts on the sediment mineralogy, which we expected to be particularly important in layers just above oceanic basement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that the natural remanent magnetization (NRM) intensity of mid-oceanic-ridge basalt (MORB) samples shows systematic variations as a function of age has long been recognized: maximum as well as average intensities are generally high for very young samples, falling off rather rapidly to less than half the recent values in samples between 10 and 30 Ma, whereupon they slowly rise in the early Tertiary and Cretaceous to values that approach those of the very young samples. NRM intensities measured in this study follow the same trends as those observed in previous publications. In this study, we take a statistical approach and examine whether this pattern can be explained by variations in one or more of all previously proposed mechanisms: chemical composition of the magnetic minerals, abundance of these magnetization carriers, vectorial superposition of parallel or antiparallel components of magnetization, magnetic grain or domain size patterns, low-temperature oxidation to titanomaghemite, or geomagnetic field behavior. We find that the samples do not show any compositional, petrological, rock-magnetic, or paleomagnetic patterns that can explain the trends. Geomagnetic field intensity is the only effect that cannot be directly tested on the same samples, but it shows a similar pattern as our measured NRM intensities. We therefore conclude that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence for the dissolution of biogenic silica at the base of pelagic sections supports the hypothesis that much of the chert formed in the Pacific derives from the dissolution and reprecipitation of this silica by hydrothermal waters. As ocean bottom waters flow into and through the crust, they become warmer. Initially they remain less saturated with respect to dissolved silica than pore water in the overlying sediments. With the diffusion of heat, dissolved ions, and to some extent the advection of water itself, biogenic silica in the basal part of the sedimentary section is dissolved. Upon conductively cooling, these pore waters precipitate chert layers. The most common thickness for the basal silica-free zone (20 m) lies below the most common height of the top of the chert interval above basement (50 m). This mode of chert formation explains the frequent occurrence of chert layers at very shallow subbottom depths in pelagic sections of the Pacific. It is also consistent with the common occurrence of cherts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study of DSDP Sites 71, 77, and 495 has allowed the development of a refined diatom biostratigraphy for the latest Oligocene through early middle Miocene of the eastern tropical Pacific which is well correlated to the low-latitude zonations for planktonic foraminifers, coccoliths, and radiolarians. Six zones and 7 subzones are proposed, and correlation with high-latitude diatoms zonations for the North Pacific, the Norwegian Sea, and the Southern Ocean is suggested by the discovery of selected diatoms in these tropical sediments which were previously thought to be restricted to high latitudes. Six new species and one new variety of diatoms which are stratigraphically useful are proposed : Actinocyclus hajosiae, n. sp., A. radionovae, n. sp., Coscinodiscus blysmos, n. sp., C. praenodulifer, n. sp., Craspedodiscus rydei, n. sp., Thalassiosira bukryi, n. sp., and Coscinodiscus lewisianus var. robustus n. var.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).