1000 resultados para 62-465A
Resumo:
The wide distribution of sapropelic deposits in the sedimentary cover of the oceans, their Cretaceous age, and their possible oil- and gas-generating characteristics allow us to regard these deposits as a regular global stage in the history of oceanic sedimentation. So, Cretaceous sapropelic deposits are a unique object for study. Cretaceous sapropelic deposits of DSDP Sites 463, 465, and 466, as well as similar sediments of the Atlantic and Indian Oceans, are characterized by enrichment in organic matter, which sometimes reaches 33% (Cape Verde Basin, DSDP Sites 367 and 368). The objective of this study is the elucidation of genesis, paleogeographic environment of sedimentation, and oil-generating potential of Cretaceous sapropelic deposits at these sites. Attention is given to petrographic composition and distribution of the organic matter.
Resumo:
Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.
Resumo:
Cretaceous sediments were recovered at all four sites (Sites 463-466) of the central North Pacific drilled during Leg 62 of the Deep Sea Drilling Project. One of the objectives was to get more information about the development of ocean plankton communities and early evolution of planktonic groups of the Mesozoic. In this article, the Cretaceous calcareous nannofossils from two areas of the central North Pacific (Mid-Pacific Mountains and Hess Rise) are listed and discussed. (The Cenozoic calcareous nannofossils are discussed by R. Schmidt 1981). Coring was continuous at all sites. Mesozoic calcareous nannoplankton assemblages range on the Mid-pacific Mountains from Barremian to Early Maastrichtian, and on Hess Rise from Albian to Late Maastrichtian. (No calcareous nannofossils older than Barremian or Albian respectively were found).
Resumo:
Percent CaCO3 was determined in selected samples aboard the ship by the carbonate-bomb technique (Müller and Gastner, 1971). Results of these analyses are listed in Table 1 and plotted in Figures 1, 3, 4, and 5 as plus signs (+). Samples collected specifically for analyses of CaCO3 and organic carbon were analyzed at three shore-based laboratories. Concentrations of total carbon, organic carbon, and CaCO3 were determined in some samples at the DSDP sediment laboratory, using a Leco carbon analyzer, by personnel of the U.S. Geological Survey, under the supervision of T. L. Valuer. Most of these samples were collected from lithologic units containing relatively high concentrations of organic carbon. Sample procedures are outlined in Boyce and Bode (1972). Precision and accuracy are both ±0.3% absolute for total carbon, ±0.06% absolute for organic carbon, and ±3% absolute for CaCO3.
Resumo:
The mass-accumulation rate (MAR) of the non-authigenic, inorganic, crystalline component of deep-sea sediments from the Pacific aseismic rises apparently reflects influx of eolian sediment. The eolian sediment usually is dominated by volcanic material, except during glacial times. Sediments from Hess Rise provide a discontinuous record of eolian MARs. During Albian to Cenomanian time, the influx of volcanic material was fairly high (0.35-0.6 g/cm**2/10**3 yr), recording the latest stages of the Albian volcanism that formed Hess Rise. From the Campanian through the Paleocene, influx of eolian sediment was low, averaging 0.03 g/cm**2/10**3 yr. None of the four Hess Rise drill sites show evidence of the Late Cretaceous volcanic episode recorded at many sites now in the equatorial to subtropical Pacific. Pliocene to Pleistocene samples record a peak in volcanic influx about 4 to 5 m.y. ago, which has been well documented elsewhere. The several-fold increase in eolian accumulation rates elsewhere which are correlated with the onset of severe northernhemisphere glaciation 2.5 m.y. ago is not obvious in the Hess Rise data.
Resumo:
Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
Volcanic ash was recovered from lower Aptian to Albian deposits from DSDP Sites 463, 465, and 466; pelagic clay of the upper Pleistocene to Upper Cretaceous was recovered mainly from Site 464, with minor amounts at Sites 465 and 466. We present X-ray-mineralogy data on pelagic clay and altered volcanic ash recovered from the four Leg 62 sites. In addition, two ash samples from Sites 463 and 465, a pelagic clay from Site 464, and a clay vein from the basaltic basement at Site 464 each were analyzed for major, minor, and trace elements. Our purpose is to describe the mineralogy and chemistry of altered ash and pelagic clays, to determine the sources of their parent material, and to delineate the diagenetic history of these clay-rich deposits. Correlation of chemistry and mineralogy of ash and pelagic clay with volcanic rocks suspected to be their parent material is not always straightforward, because weathering and diagenetic alteration caused depletion or enrichment of many elements.
Resumo:
The main tasks of this study were (1) identification of minerals of the clay fraction, (2) identification of clay-mineral associations in relation to stratigraphic intervals, and (3) elucidation of genetic relations of clay minerals with types of sediments and factors of sedimentation. Identification of clay minerals was carried out mainly with an X-ray diffractometer (DRON-I). X-ray diffractograms were prepared by means of CuKalpha radiation, at 35 kW and a current of 20 ma. The scanning rate was 2°/min. Oriented specimens were prepared for the <1-µm fraction (and partly for the <10-µm fraction because of insufficient core material) in three states: air-dried, saturated with glycerine, and heated at 550°C.